
NASA TN D-20 

TECHNICAL NOTE 
0-20 

?mSIGN OF C 0 " U O U S  AND 

SAMPLED-DATA FEEDBACK CONTROL SYSTEMS 

WITH A SATURATION TYPE NONLINEARZI'Y 

By Stanley Franc is  Schmidt 

Ames Research Center  
Moffett Field, Calif. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

WASHINGTON - August 1959 
(hASA-TN-D-20) % € E  BNALYSXS AbD B E S I G 3  OF 589-707C7 

C C # I I E U C I J S  A N D  ZALELEC-DATa € f € L E A C K  CONTBCL 
SYS'IGBS L I T R  A S A I C A B I I C N  TYPE LCYLXNEABITY 



TABLE OF CONTENTS 

Page . 
SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . .  

1.1 Discussion and Scope of t he  Problem . . . . . . . . . .  
1.2  History of Previous Work . . . . . . . . . . . . . . . .  
1.3 Description of the  Problem . . . . . . . . . . . . . . .  

I1 . METHODS FOR ANALYSIS AND DESIGN . . . . . . . . . . . . . . .  
2.1 Introduct ion . . . . . . . . . . . . . . . . . . . . . .  
2.2 Root Locus . . . . . . . . . . . . . . . . . . . . . . .  
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . .  
2.4 Switch Time Method, Analysis . . . . . . . . . . . . . .  
2.5 Calculation of Response Times . . . . . . . . . . . . .  

2.5.1 Linear region . . . . . . . . . . . . . . . . . .  
2.5.2 Saturated region . . . . . . . . . . . . . . . .  
The Determination of Nonlinear Functions t o  Improve 

the  Step Response . . . . . . . . . . . . . . . . . .  
2.6.1 An optimum second-order system . . . . . . . . .  

2.7 Limitations of t he  Switch T i m e  Method . . . . . . . . .  
2.8 Analysis and Design Methods f o r  Sampled-Data Systems . . 

2.8.1 Root locus . . . . . . . . . . . . . . . . . . .  
2.8.2 Switch t i m e  method, ma;Lysis . . . . . . . . . .  
2.8.3 Calculat.ion or response times . . . . . . . . . .  
2.8.4 Calculation of nonlinear funct ions . . . . . . .  
2.8.5 Discussion . . . . . . . . . . . . . . . . . . .  

I11 . DERIVATION O F  TKF: OPTIMUM FZSPONSE . . . . . . . . . . . . .  
3.1  Introduct ion . . . . . . . . . . . . . . . . . . . . . .  
3.2 

Time Signal . . . . . . . . . . . . . . . . . . . . .  
3.3 A Method f o r  Deriving t h e  Optimum Response . . . . . . .  
3.4 P. Type 1 First-Order Plant . . . . . . . . . . . . . . .  
3.5 A Type 1 Second-Order Plant . . . . . . . . . . . . . .  
3.6 A Type 1 Third-Order Plant . . . . . . . . . . . . . . .  
3.7 A Type 2 Second-Order Plant . . . . . . . . . . . . . .  
3.8 A Type 2 Third-Order Plant . . . . . . . . . . . . . . .  
3.9 A Type 2 Fourth-Order Plant . . . . . . . . . . . . . .  

3.9.1 Asymptotic solut ion for a type 2 fourth-order 
p l m t  . . . . . . . . . . . . . . . . . . . . .  

3.10 A Type 3 Third-Order Plant . . . . . . . . . . . . . . .  
I V  . EXAMPLES OF SATURATED CONTROL SYSTEMS . . . . . . . . . . . .  

4.1 Introduct ion . . . . . . . . . . . . . . . . . . . . . .  
4.2 A Sampled-Data Bank-Angle Autopilot (Feedback Design) . 
4.3 A Sampled-Data Bank-Angle Autopilot, D(z )  Design . . . .  
4.4 A Continuous Normal Acceleration Autopilot . . . . . . .  

2.6 

A Theorem on t h e  Laplace Transform of a Truncated 

3.6.1 Asymptotic solut ion f o r  very l a rge  inputs  . . . .  

1 
3 
3 
4 
5 
9 
9 
9 

12 
13 
18 
18 
1.9 

23 
26 
28 
32 
32 
32 
37 
37 
39 
40 
40 

40 
41 
43 

50 
54 
58 

1 1 1 ,  
?-t 

67 
68 
70 
70 
70 
80 
86 



Page - 
. . . . . . . . . . . . . . . . . . . . . . . .  V. CONCLUSIONS 102 5 . 1  Summary of Results . . . . . . . . . . . . . . . . . .  102 

5.2 Suggestions for Further Research . . . . . . . . . . .  lo3 
BIBLIOGRAPHY 105 . . . . . . . . . . . . . . . . . . . . . . . . .  

4 

ii 



LIST OF ILLUSTRATIONS 

.. 

b 

Figure 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

24 
25 

26 
37 L I  

28 

29 
30 
31 
32 

33 

34 
35 
36 

37 

Block diagram of systems t o  be considered . . . . . . . .  
Root l o c i  of a type 1 system . . . . . . . . . . . . . .  
Root l o c i  of  a condi t ional ly  s table  type 1 system . . . .  
Root l o c i  of a type 2 system . . . . . . . . . . . . . .  
Time s t e p  responses of a saturated type 2 system . . . .  

Block diagram o f  a sa tura ted  control system . . . . . . .  
Step responses f o r  a second-order system . . . . . . . .  
F i r s t  r eve r sa l  times of example system . . . . . . . . .  

Root l o c i  of a condi t ional ly  s table  type 2 system . . . .  
Root l o c i  of a type 3 system . . . . . . . . . . . . . .  

Block diagram of a sa tura ted  control  system . . . . . . .  
Calculation of response time of example system . . . . .  
Sketch o f  response f o r  example system . . . . . . . . . .  
Calculated and measured response times f o r  example system 
Block diagram of  a r e l ay  control system . . . . . . . . .  
Phase plane t r a j e c t o r i e s  f o r  a r e l a y  cont ro l  system . . .  
Nonlinear functions f o r  example con t ro l  system . . . . .  
Root l o c i  of a type 2 system . . . . . . . . . . . . . .  
Root l o c i  of a type 1 system . . . . . . . . . . . . . .  
Block diagram of a t ) ~ e  1 syst.m . . . . . . . . . . . .  
Slock  diagram of  an example sampled-data system . . . . .  
Actual and optimum first reversal  times f o r  example 

Step responses of example system . . . . . . . . . . . .  
Approximation t o  optimum f i rs t  r eve r sa l  curve for 

example system . . . . . . . . . . . . . . . . . . . .  
Nonlinear funct ion f o r  example system . . . . . . . . . .  
Step responses of modified system . . . . . . . . . . . .  
Optimum motion of t he  iiipct,, x(t), f ~ r  R tyge 1 first- 

order p lan t  . . . . . . . . . . . . . . . . . . . . . .  
Minimum response time f o r  a type 1 f i r s t - o r d e r  plant  . . 
Block diagram of a type 1 second-order p lan t  . . . . . .  
Time h i s t o r i e s  f o r  example sys tem . . . . . . . . . . . .  

Plant  input ,  xit). for a stel;  i L L Y d L ,  R u d t ' !  \ I  . . . . . . .  
system . . . . . . . . . . . . . . . . . . . . . . . .  

Optimum motion of the  input. x ( t )  , f o r  a type 1 second- 
order plant  . . . . . . . . . . . . . . . . . . . . . .  

Optimum first r eve r sa l  time for  a type 1 second-order 
p l an t  . . . . . . . . . . . . . . . . . . . . . . . . .  

Minimum response time f o r  a type 1 second-order p lan t  . . 
Optimum motion of t h e  input.  x ( t )  . f o r  a type 1 th i rd -  

Optimum first  r eve r sa l  time f o r  a type 1 third-order  

Block diagram of a type 1 third-order plant  . . . . . . .  
o r d e r p l a n t  . . . . . . . . . . . . . . . . . . . . . .  
plant  . . . . . . . . . . . . . . . . . . . . . . . . .  

Page . 
4 
8 
8 
9 
9 
10 
10 
11 
1.3 
14 
15 
18 
1.9 
1.9 
20 
20 
23 
27 
28 
29 
11 
J 

29 d i  

34 
34 

35 
36 
37 

41 
42 
42 
43 

44 

47 
48 
49 

49 

50 

! . iii 



Figure 

38 
39 
40 
41 
42 
43 

44 

45 
46 

47 
48 
49 

50 
51 

52 

53 

54 

55 

57 

58 

59 

60 

61 

62 
63 

64 

6 5  

Minimum response time for a type 1 third-order plant . . 
Step responses of a second-order system . . . . . . . . . 
Block diagram of a type 1 third-order plant . . . . . . . 
Normalized data for asymptotic solutions . . . . . . . . 
Optimum switching times for a type 2 second-order plant . 
Optimum motion of the plant input, x(t), for a type 2 
third-order plant . . . . . . . . . . . . . . . . . . . 

Optimum first reversal time for a type 2 third-order 
plant . . . . . . . . . . . . . . . . . . . . . . . . .  

Minimum response time for a type 2 third-order plant . . 
Optimum first reversal time for a type 2 fourth-order 
plant . . . . . . . . . . . . . . . . . . . . . . . . .  

Minimum response time for a type 2 fourth-order plant . . 
Block diagram of a type 2 fourth-order plant . . . . . . 
Optimum motion of the plant input, x(t) , for a type 2 
fourth-order plant . . . . . . . . . . . . . . . . . . 

Optimum switching times for a type 3 third-order plant . 
Block diagram of a sampled-data bank angle autopilot; 

F’B design . . . . . . . . . . . . . . . . . . . . . . . 
Pole position loci as a function of the limiter gain; 
FB design . . . . . . . . . . . . . . . . . . . . . . . 

First reversal times for a sampled-data bank-angle 
autopilot; FB design . . . . . . . . . . . . . . . . . 

Step responses of a sampled-data bank-angle autopilot; 
FB design . . . . . . . . . . . . . . . . . . . . . . . 

Calculated, measured, and minimum response times for 
the sampled-data bank-angle autopilot; FB design . . . 

Staircase approximation to the optimum first reversal 
c u r v e . . . . . . . . . . . . . . . . . . . . . . . . .  

Nonlinear function used to modify the sampled-data bank- 
angle autopilot; l?E3 design . . . . . . . . . . . . . . 

Step responses of the modified sampled-data bank-angle 
autopilot; FB design . . . . . . . . . . . . . . . . . 

Block diagram of a sampled-data bank-angle autopilot; 
D(z) design. . . . . . . . . . . . . . . . . . . . . . 

Pole position loci as a function of the limiter gain; 
D(z) design. . . . . . . . . . . . . . . . . . . . . . 

First reversal times for a sampled-data bank-angle 
autopilot; D(z) design . . . . . . . . . . . . . . . . 

Step responses of bank-angle autopilot; D(z) design . . . 
Calculated, measured, and minimum response times for the 
sampled-data bank-angle autopilot; D(z) design . . . . 

Nonlinear function used to modify the sampled-data bank- 
angle autopilot; D(z) design . . . . . . . . . . . . . 

Step responses of the modified sampled-data bank-angle 
autopilot; D( z) design . . . . . . . . . . . . . . . . 

Page 

51 
53 
54 
55 
56 

57 

61 
62 

63 
64 
65 

65 
67 

69 

73 

74 

75 

76 

77 

77 

78 

80 

81 
81 

82 

83 

84 

iv 



C 

Figure 

66 
67 

68 

69 
70 

71- 

72 

73 

74 

75 
I (6 

77 

78 

Block diagram of a normal acceleration autopilot 
Root loci of the normal acceleration autopilot as a 

First reversal times for the normal acceleration 
autopilot . . . . . . . . . . . . . . . . . . . . . . .  

Step responses of the normal acceleration autopilot . . .  
Nonlinear function used to modify the normal acceleration 

Step responses of the modified normal acceleration 

Loci of zero positions for variable Kq and locus of 

Locus of zero position for variable KJ and locus of 

Nonlinear function of error for normal acceleration 

Step responses of the modified normal acceleration 

Kq versus KL 

Nonlinear functions, Kq( E) and K; ( c )  , Tor i.ise iii the 

Step responses of the modified normal acceleration 

. . . .  
function of the limiter gain . . . . . . . . . . . . .  

autopilot . . . . . . . . . . . . . . . . . . . . . . .  
autopilot . . . . . . . . . . . . . . . . . . . . . . .  
complex pole position for K = -0.328 . . . . . . . .  
complex pole position for K2 = -4.188 . . . . . . . .  

4. 

autopilot . . . . . . . . . . . . . . . . . . . . . . .  
autopilot . . . . . . . . . . . . . . . . . . . . . . .  
acceleration autopilot . . . . . . . . . . . . . . . .  

f o r  2 cr?nstant damping ratio of the iio-mil 

I .  - 

normal acceleration autopilot . . . . . . . . . . . . .  
autopilot . . . . . . . . . . . . . . . . . . . . . . .  

Page 

85 

87 

89 
89 

91 

92 

93 

95 

96 

96 

98 

99 

99 

V 



LIST OF TABUS 

Table Page - 
5 I Plants considered in this investigation . . . . . . . . . 

51 I1 Optimum reversal times for a type 1 third-order plant . . 
I11 Optimum reversal times for a type 2 fourth-order plant . 64 

vi 



., 

b 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D-20 

T€JE ANALYSIS AND DESIGN OF CONTINUOUS AND 

SAMPLED-DATA FEEDBACK CONTROL SYSTEMS 

WITH A SATURATION TYPE NONLINEARITY1 

By Stanley Francis Schmidt 

SUMMARY 

The problem studied i n  t h i s  invest igat ion i s  how t o  design and 
analyze feedback cont ro l  systems i n  which a sa tu ra t ion  type nonl inear i ty ,  
o r  l i m i t e r ,  occurs on the  input t o  the  cont ro l led  system, o r  "p lan t . "  
i'ne p i a i z  i s  assumed t o  have one input and one output m d  t o  be describ- 
able by l i n e a r  d i f f e r e n t i a l  equations with c o n s t m t  coeff ic ier i ts  . Tilc 
s c q z  of zhe inves t iga t ion  covers plan-ts wlioss transfer f m c t i n n s  a r e  of  
f i rs t  t o  four th  order .  

- 

A s  a r e s u l t  of t h e  assumption of l i n e a r i t y  and t h e  f a c t  t h a t  l i m i t -  
ing has no e f f e c t  f o r  small s igna l  inputs, t h e  feedback cont ro l  system 
can be designed by t h e  use of conventional, l i n e a r  feedback cont ro l  
theory for t he  s m a l l  input s igna l  range. The problem then becomes how 
one can analyze t h e  response of the  system f o r  l a rge  s igna l  inputs  which 
cause saturaiiuii zzcl hsw tc! d e s i ~ n  co inp~r~sz t ing  mnl-inear funct ions 
which w i l l  improve the  response should t h e  ana lys i s  show t h i s  t o  be 
necessary . 

The root  locus and t h e  switch time methods a re  used i n  t h i s  
i nves t iga t ion  f o r  so lu t ion  of t he  problem. 
locus method i s  conventional with the  exception t h a t  t he  l i m i t e r  i s  
t r e a t e d  as a device whose equivalent gain decreases as i t s  input  
increases .  It i s  shown t h a t  a root  locus graph with respect  t o  t h e  
l i m i t e r  gain gives a q u a l i t a t i v e  indicat ion of t he  system response as a 
funct ion of input  amplitude. The switch time method i s  based on t h e  use 
of s t ep  inputs  f o r  ana lys i s  and design purposes. It provides t h e  cont ro l  
system designer with t h e  following: 

The appl ica t ion  of t he  root  

. 
'This repor t  w a s  submitted t o  Stanford Urlivei-sity i n  p a r t i a l  

fu l f i l lmen t  of t h e  requirements f o r  the degree of Doctor of Philosophy 
i n  E l e c t r i c a l  Engineering, June 1959. 
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(1) A means f o r  analysis of s a tu ra t ed  con t ro l  systems t o  determine 
the  s i z e  of t h e  s t e p  inputs  which cause poor performance. 

( 2 )  A means f o r  quickly ca l cu la t ing  t h e  response t i m e  f o r  l a r g e  
s t e p  inputs .  

(3)  A means f o r  synthesizing nonl inear  funct ions which provide near 
optimum response f o r  l a rge  s t e p  inputs .  

The switch t i m e  method uses t h e  optimum bang-bang so lu t ion  f o r  s t e p  
inputs .  
t i o n  of t h e  s t ep  i s  longer  than  t h e  bang-bang so lu t ion ,  overshoot must 
e x i s t .  
t i o n  one obta ins  t h e  method f o r  synthesizing nonl inear  funct ions which 
provide near optimum response f o r  l a r g e  inputs .  

It i s  shown t h a t  i f  t h e  f irst  r eve r sa l  t i m e  af ter  t h e  applica- 

By forc ing  t h e  f i rs t  r eve r sa l  t i m e  t o  be t h e  optimum re l ay  solu- 

A number of optimum bang-bang f i r s t  r eve r sa l  t i m e s  and minimum 
response times a re  derived and presented i n  normalized form. 

The switch t i m e  and root  locus methods are appl ied t o  severa l  
7 a i r c r a f t  au topi lo t  examples where t h e  rate of control-surface motion i s  

l imi t ed .  Both sampled-data and continuous systems are presented. The 
r e s u l t s  of simulation s tud ie s  demonstrate t h e  v a l i d i t y  of t h e  approach. 

It i s  general ly  concluded t h a t  t h e  combination of t h e  switch t i m e  
method along with c e r t a i n  root  locus techniques o f f e r s  a very powerful 
t o o l  f o r  analyzing and designing both sampled-data and continuous 
systems in which a sa tu ra t ion  type nonl inear i ty  i s  present .  
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I. INTRODUCTION 

1.1 Discussion and Scope of t h e  Problem 

The design of l i n e a r ,  continuous and sampled-data, feedback cont ro l  
systems has become a w e l l  advanced science i n  recent  years .  I n  most 
ins tances ,  cont ro l  systems a re  designed by t h e  use of a l i n e a r  model. 
The ac tua l  system i s  then constructed and t h e  d i f fe rence  between t h e  
desired response of  t he  l i n e a r  model and t h e  response of t h e  ac tua l  
system i s  a t t r i b u t e d  t o  nonl inear i t ies .  Generally, one can subdivide 
the  types of non l inea r i t i e s  i n t o  classes which s ign i fy  t h e  manner i n  
which they de te r io ra t e  t he  desired model response. For example, con- 
s i d e r  t h e  two c l a s ses  as (1) nonl inear i t ies  whose p r inc ipa l  e f f e c t  i s  
on the  nu l l ing  accuracies ,  and (2 )  nonl inear i t ies  whose p r inc ipa l  e f f e c t  
i s  on t h e  t r a n s i e n t  response. 
l a sh ,  dead zones, hys t e re s i s ,  quantizing e r r o r s ,  e t c .  I n  the  second 
c l a s s ,  one can place sa tu ra t ion  and non l inea r i t i e s  which make the  "plant"1 
t r a n s f e r  funct ion change as a function of t h e  magnitude of some p lan t  
var iab le  (e .g .  , pitch-up of an a i r c r a f t  where t h e  p i tch ing  moment i s  a 
nonl inear  funct ion of t he  angle of a t tack) .  The c l a s s i f i c a t i o n  can be 
made geDerally, s ince t h e  nonl inear i t ies  of t h e  f i r s t  c i a s s  produce b i a s  

t he  t o l e r a b l e  e r r o r  region. If t h e  plant i s  l i n e a r ,  which i s  one of t he  
r e s t r i c t i o n s  of t h i s  inves t iga t ion ,  t h e  e f f e c t s  of s a tu ra t ion  can be 
f a i r l y  wel l  i s o l a t e d  from the  e f f ec t s  of many o the r  non l inea r i t i e s .  Since 
a l l  systems must have sa tu ra t ion  of one o r  more of t he  var iab les ,  it 
appears des i rab le  t o  develop methods which are spec ia l ly  su i t ed  t o  analyze 
and design cont ro l  systems with saturat ion.  

In  the  f i rs t  c l a s s ,  one may place back- 

e r r o r s  md,or  I l i x i t  cyclps yh~se amplitude ~ ~ s t  be ic.zei,tlt szlall to b e  ....riQlig- 

The e f f e c t s  or saturat ior i  iri i3, c o n t r d  sye-1:Etrn =ere i.0 1 i m i t  t he  
ve loc i ty ,  acce le ra t ion ,  o r  higher derivatives with which an output can 
fol low a given input .  If the system i s  reasonably f r e e  of non l inea r i t i e s  
of t he  first c l a s s  previously mentioned, l i n e a r  methods may be used t o  
design the  system f o r  a desired performance around zero e r r o r .  
means of t he  methods presented here,  t he  e f f e c t s  of s a tu ra t ion  on t h e  
p a r t i c u l a r  system designed may be determined and appropriate  compensating 
non l inea r i t i e s  may be designed t o  insure adequate s t a b i l i t y  and t r a n s i e n t  
response f o r  l a rge  e r r o r  conditions.  

Then, by 

One of t he  s ign i f i can t  fea tures  of s a tu ra t ion  i s  t h a t  i t s  presence 
i n  a cont ro l  system permits an optimum system t o  be defined. 
mum system uses t h e  m a x i m u m ,  o r  a smaller value of t h e  sa tura ted  var iab le ,  
i n  an optimum manner t o  reduce the  e r ror  t o  zero i n  a minimum time. This 

f e r  funct ion could, f o r  example, be the  mathematical re la t ionship  between 
the  output of an ampl i f ie r  and a motor sha f t  pos i t i on  i n  a servo-posit ion 
con t ro l l e r .  

This op t i -  

'The word "plant"  r e f e r s  t o  t h e  cont ro l led  system. The p lan t  t rks-  
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f a c t  i s  used i n  t h i s  inves t iga t ion  f o r  t h e  der iva t ion  of minimum response 
t i m e s  of s a tu ra t ed  cont ro l  systems f o r  s t e p  inputs .  
presented i n  which the  approximate response t i m e  of any given system 
which uses a l i n e a r  c o n t r o l l e r  can be obtained so t h a t  a comparison 
between the  optimum and a c t u a l  response can be  made. 
t h e  designer t o  determine i f  a l a r g e r  con t ro l l e r  i s  required and t o  what 
ex ten t  increasing t h e  complexity of t h e  con t ro l  equations w i l l  decrease 
t h e  response t i m e .  

A method i s  then 

These da ta  allow 

This inves t iga t ion  considers p l a n t s  whose t r a n s f e r  funct ions a re  of 
f i r s t  t o  fou r th  order .  Two examples, one second order  and one t h i r d  
order ,  are used wherein t h e  p l an t  has a s ing le  zero i n  i t s  t r a n s f e r  
funct ion.  The o ther  p l a n t s  which are considered have only poles .  

Two a i r c r a f t  au topi lo t  examples are designed f o r  both sampled and 
continuous systems t o  demonstrate t h e  design methods proposed; simula- 
t i o n  r e su l t s  are presented f o r  v e r i f i c a t i o n  of t he  design philosophy. 

1 . 2  History of Previous Work 

Saturat ion i n  cont ro l  systems has received considerable a t t e n t i o n  
by many authors i n  recent years .  
r e l a y  o r  on-off cont ro l  systems, s ince f o r  l a r g e  inputs  t h e  sa tura ted  
var iab le  takes  on i t s  maximum values (switching from one t o  t h e  o the r )  
i n  a manner which i s  s i m i l a r  t o  t h e  on-off con t ro l  system. This means 
t h a t  much o f  t h e  previous work r e l a t e d  t o  on-off c o n t r o l l e r s  can be used 
i n  s tud ies  of continuous-type sa tu ra t ed  cont ro l  systems. Not much has 
been accomplished u n t i l  qu i t e  recent ly  with regard t o  sa tu ra t ed  sampled- 
da t a  systems. Probably t h e  most complete bibliography per ta in ing  t o  
both these subjec ts  as well  as o ther  subjec ts  deal ing with cont ro l  
systems i s  t h e  one being prepared by Higgins ( r e f .  1) .* 
which i s  used i n  t h i s  i nves t iga t ion  i s  l i s t e d  i n  t h e  Bibliography. One 
contr ibut ion which i s  used most d i r e c t l y  can be found i n  a paper by 
Kalman ( r e f .  2 ) .  
t h a t  t h e  roots  of t h e  c h a r a c t e r i s t i c  equation with t h e  nonl inear i ty  
replaced by a gain equal t o  i t s  der iva t ive  remain i n  t h e  l e f t  ha l f  plane.  
The abrupt changes i n  slope of a l i m i t e r  a r e  assumed t o  be formed by a 
segment of a c i r c l e  with an a r b i t r a r i l y  small rad ius .  This assumption 
permits  the der iva t ive  t o  be defined a t  every poin t  and, t he re fo re ,  t he  
gain of t h e  l i m i t e r  va r i e s  from some f i n i t e  slope t o  zero i n  a continuous 
manner. A similar argument which shows a l i m i t e r  can be t r e a t e d  as a 

t h e  use of describing-function ana lys i s  (see,  e .g . ,  re f .  3 ) .  A s  is shown 
by Kalman, one can draw a root  locus as a funct ion of  l i m i t e r  gain,  which 

*See the  numbered references which appear i n  t h e  Bibliography. 

Sa tura t ion  i s  very c lose ly  r e l a t e d  t o  

Previous work 

H e  showed t h a t  a s u f f i c i e n t  condi t ion f o r  s t a b i l i t y  i s  

ga in  which decreases as t h e  input  amplitude increases  can be obtained by 1 



provides a q u a l i t a t i v e  ind ica t ion  of var ia t ion  of system performance with 
input  amplitude. This i s  used i n  developing some ru l e s  regarding systems 
i n  chapter 11. 

Bellman, Glicksberg, and Gross ( r e f .  4) proved t h a t  t h e  minimum 
response t i m e  of a bang-bang cont ro l le r  w a s  obtained by having t h e  satu- 
r a t e d  var iab le  go from one l i m i t  t o  the o the r  with t h e  number of r eve r sa l  
times being dependent on the  order .  This proof w a s  r e s t r i c t e d  t o  systems 
containing d i s t i n c t  roo ts  on the  negative ha l f  of t h e  r e a l  ax i s .  Further  
discussion of optimum re l ay  systems and appl ica t ion  of t h e  theorem of 
reference 4 i s  made i n  chapter 111. 

The author and T r i p l e t t  ( r e f .  5) demonstrated one technique of 
designing non l inea r i t i e s  f o r  saturated cont ro l  systems which makes use 
of t h e  optimum re l ay  so lu t ion .  This technique i s  r e fe r r ed  t o  as t h e  
switch time method and i s  derived i n  chapter 11. One of t h e  purposes of 
t h i s  i nves t iga t ion  i s  t o  extend t h i s  switch time method t o  s a p l e d - d a t a  
systems. The extension i s  a l so  explained i n  chapter 11. 

St.a.ndar-d design techniques a r e  used f o r  t h e  design of t h e  system i n  
the  l i n e a r  region f o r  cor?_tixo!!s ( r e f ,  3) as well  as sampled-data (ref. 6 )  
syst,ems, with the  exception t h a t  t he  sampled-data designs use the  addi- 

( a l s o  described i n  NASA MEMO 4-14-3912 ( r e f .  8 )  by t h e  author and Earper). 
t i G ; ; a ~  methgd ciesci-ihed i3 2 r e c e r l t  -L-IEE by +he ziLtj2,:,1- / r e f .  7) 

1.3 Description of t h e  Problem 

The problem i s  b e s t  understood with reference t o  the  block diagrams 
shown i n  figures ;(a) ad l ( ’ s f .  I ~ P T P ,  r(i.) repi-eserit,~ t h e  input command 
s igna l  and c ( t )  represents  t he  output of t he  p l an t  (cont ro l led  systemj . 
I n  general ,  one des i r e s  t h e  e r r o r  ( r -  c )  = E ( t )  t o  be as small as poss ib le  
f o r  all inputs ,  r, the  system w i l l  receive.  A l i m i t e r  i s  loca ted  on t h e  
input t o  the  p l an t .  Limiting i n  actual  p rac t i ce  can come from a number 
of sources such as tube sa tu ra t ion  i n  e l ec t ron ic  systems, physical  s tops  
i n  mechanical systems, e t c .  This l i m i t e r  causes t h e  input t o  the  plant, 
x, t o  be a bounded var iable;  t h a t  i s ,  1x1 cannot exceed B and ( i f  one 
has t h e  optimum system) w i l l  r es tore  t h e  e r r o r ,  E ( t ) ,  t o  zero i n  a 
minimum time. 

I n  f igu re  1, D ( s )  represents  the t r a n s f e r  funct ion of an analog 
c o n t r o l l e r  and I n  
t h e  sampled-data system, a zero-order hold c i r c u i t  i s  used t o  convert 
t he  pulse  s igna l  t o  a continuous signal; D(z )  i s  the  pulse t r a n s f e r  
funct ion of t he  d i g i t a l  con t ro l l e r .  

H(s), the  t r a n s f e r  function of a feedback network. 
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Con ti nuous 
controller Limiter Plant 

I Instruments 

c U 

(a) Continuous system. 

Instruments 
n 

( b )  Sampled-data system. 

Figure 1.- Block diagram of systems t o  be considered. 



7 

, 
I - K 1 1 - first  order  

S 
4. 

The p lan t  t r a n s f e r  funct ions,  G ( s ) ,  t o  be considered i n  t h i s  repor t  
are given i n  table I. The conventional d e f i n i t i o n  according t o  ' 'type, 1 1 3  

with t h e  added spec i f i ca t ion  of t he  order of t h e  denominator of  
given i n  t a b l e  I f o r  t h e  various p lan ts .  
consider t h e  various systems obtained by determining t h e  lowest order  
output bounded der iva t ive  f o r  x remaining a t  one of i t s  bounded values 
f o r  an i n f i n i t e  per iod  of t i m e .  Since a l l  t he  roots  of t h e  charac te r i s -  
t i c  equation of t he  p l a n t s  given i n  table  I, o the r  than those at t h e  
o r ig in ,  are i n  t h e  l e f t  half  plane,  one can state t h a t  a l l  type 1 p l a n t s  
are "veloci ty  l imi ted ,  a l l  type 2 p lan ts  are "accelerat ion l imi t ed ,  
e t c .  
t h e  fundamental c h a r a c t e r i s t i c s  of saturated con t ro l  systems which a r e  
derived l a t e r .  

G ( s ) ,  i s  
It i s  genera l ly  convenient t o  

This  c l a s s i f i c a t i o n  w i l l  be found use fu l  i n  remembering some of 

Table I.- Plants  considered i n  t h i s  i nves t iga t ion  

Case 

1 

2 

3 

4 

5 

6 

7 

- I 

j 1 - second order  
! 

K 
S 2  
- 2 - second order  I 

K( -rls + 1) 
2 - t h i r d  order  

s2( T2S + 1) 

3 - t h i r d  order  K 
53 
- 

I 

3 
"Type" i n  t h i s  usage means t h e  number of i n t eg ra t ions  of t h e  p l an t  

o r ,  i n  transfer funct ion terms, it i s  t h e  number of poles  a t  t h e  o r i g i n .  
I n  t h e  usua l  d e f i n i t i o n  of t he  word it r e f e r s  t o  whether t h e r e  i s  a zero 
e r r o r  i n  t h e  steady state t o  a step (type l), zero e r r o r  t o  a ramp 
( type 21, e t c .  I n  t h i s  inves t iga t ion  no in t eg ra t ions  o r  cance l la t ions  
of p l an t  poles  a re  permit ted i n  t h e  t r a n s f e r  funct ion of t h e  c o n t r o l l e r s  
D( s)  o r  D( z )  . Under these  r e s t r i c t i o n s  t h e  conventional type d e f i n i t i o n  
a.nd. the usage of type on t h e  p l an t  t r ans fe r  funct ion are i d e n t i c a l  i f  
H(s) = 1; t h a t  i s ,  a type 1 p lan t  gives a type 1 system, e t c .  

F 

. 
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The problem can b e  broken down i n t o  t h e  following bas i c  questions:  

(1) Given a cont ro l  system as i n  f igu re  l ( a )  where D(s) and/or 
H(s) o r  f igu re  l ( b )  where 
t o  give s a t i s f a c t o r y  performance i n  t h e  unsaturated region, 

D(z) and/or H(s) have been designed 

(a) How can one p red ic t  t h e  performance with l a r g e  input  
t r a n s i e n t s ?  

(b )  If t h i s  performance i s  unsa t i s fac tory ,  what m e a n s  can be 
used t o  improve it? 

( 2 )  What i s  the  optimum performance of a given p l an t  f o r  a s t ep  
For example, what i s  t h e  minimum response time as a input?  

func t ion  of t h e  magnitude of t h e  input?  

Questions l ( a )  and l ( b )  are answered i n  chapter 11. The examples 
i n  chapter I V  demonstrate t h e  method. 
chapter 111. 

Question 2 i s  answered i n  

T 
The author  would l i k e  t o  express appreciat ion t o  D r .  G .  F. Frankl in  

of Stanford Universi ty  f o r  h i s  t echn ica l  advice during t h e  course of 
t h i s  inves t iga t ion .  Appreciation i s  a l s o  expressed t o  both D r .  Frankl in  
and D r .  Irmgard Flcgge-Lotz of Stanford Universi ty  f o r  t h e i r  he lp fu l  
suggestions made during the  preparat ion of t h i s  r epor t .  
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. 

11. METHODS FOR ANALYSIS AND DESIGN 

2.1 Introduction 

Sa tura ted  con t ro l  systems of t h e  type shown i n  f igu res  l ( a )  and 
l ( b )  have c h a r a c t e r i s t i c s  which a re  very much dependent on t h e  input 
amplitude i f  t h e  input i s  a s t e p  and on both t h e  input  amplitude and 
frequency i f  t h e  input  i s  a s ine  wave. Systems designed on a l i n e a r  
b a s i s  can become unstable  o r  have a very long response t i m e  i f  exc i ted  
i n t o  t h e  nonl inear  ( sa tura ted)  region. 
chapter  t o  review t h e  var ious methods o f  t r e a t i n g  sa tu ra t ion  f o r  con- 
t inuous and sampled-data systems and t o  extend one method t o  sampled- 
da ta  systems. 

It i s  t h e  purpose of t h i s  

2.2 Root Locus 

’ i~scr i l? ing  funct ion anaiiysis ( e . g . ,  r e i .  n 2 )  7\ zppl izd ta 9 limiter 
gives  t h e  resul t  t h a t  a l i m i t e r  i s  equivalent t o  a gain reduct ion as a 

have a l s o  shown t h a t  f o r  s t a t i s t i c a l  inputs the e f f e c t  oi’ a i h i i t e i -  i n  
a con t ro l  system such as figure 1 can be t r e a t e d  approximately as an 
equivalent  gain.  If one assumes the  l imi t e r  i s  equivalent t o  a gain 
which decreases as t h e  input increases,  then a root  locus of t he  system 
drawn as a funct ion of the l i m i t e r  gain gives  a q u a l i t a t i v e  p i c tu re  of 
t h e  system behavior as t h e  input signal t o  t,hc l i m i t e r  chznges amplitude. 
Kalman ( r e f .  2) states t h a t  i f  any nonlinear system i s  s t a b l e  when 
l i ; i e s ~ i z e c ?  et e’:e?J nperat ing point  ~ t.hcn t h e  nonl inear  syst.em i s s t a b l e .  
Thus, a root-locus p l o t  of t he  pole posi t ions as a funct ion of t he  
l i m i t e r  gain can be  used t o  give qua l i ta t ive  information as t o  what 
change i n  performance i s  t o  be expected. 

fipT7tieFL : _ _ _ _  :-,e 2 ~ I L ~ - ~ ~ . l . l . ,  - - - - A .  c m - 7  <+,,A, . BC)G ~s;in, ~“lat,.he.ws m d  S e i f e r t  ( r e f i  9) 

The following rules’ are developed by t h e  root-locus method: 

lThis i nves t iga t ion  i s  r e s t r i c t e d  t o  systems where any poles  of 
D ( s )  o r  H ( s )  are heavi ly  damped. This  r e s t r i c t i o n  i s  qu i t e  necessary i n  
the  method t o  be presented la ter  for  synthesizing nonl inear  funct ions 
which provide near  optimum response f o r  l a r g e  inpu t s .  With reference t o  
figure l ( a ) ,  one can see t h a t  l a r g e  step inputs  immediately sa tu ra t e  t h e  
l i m i t e r .  This s a tu ra t ion  tends t o  open up t h e  loop, and thus  poorly 
damped c h a r a c t e r i s t i c s  of H(s) o r  D(s) would cause t h e  input  t o  t h e  
l i m i t e r  t o  become very o s c i l l a t o r y ,  possibly swinging t h e  output of t he  
l i m i t e r  back and f o r t h  at a high frequency. This r e s t r i c t i o n  i s  not too 
ser ious  s ince ,  general ly ,  l ead  o r  lag networks o r  o the r  compensation 
networks with r e a l  poles  are used fo r  
ins t r -ments  a-re iused f o r  H ( s )  . 
presented here  are almost always applicable.  

D ( s )  and reasonably wel l  damped 
From a p r a c t i c a l  s tandpoint ,  t he  methods 



10 

s t a b l e  for  l a rge  inputs .  

Proof: 

Rule I. A type 1 system which i s  not condi t iona l ly  stable‘ and 
which i s  designed f o r  good performance f o r  s m a l l  inputs  will always be 

Consider a root  locus of a type 1 
system as shown i n  f igu re  2 f o r  a th i rd -  
order  example. If, f o r  example, A, B, and C 
a r e  the  chosen pole pos i t ions  f o r  t h e  oper- 
a t i n g  gain of  t h e  system, then l a r g e  inputs ,  
which cause g rea t e r  l i m i t i n g  ac t ion  t o  take 
p lace ,  cause t h e  poles  t o  move back along 
t h e  l o c i  i n  reverse  t o  the  arrows. Note 
t h a t  the dominant mode of t h e  system ( t h e  
pole c losest  t o  t h e  o r ig in )  represents  a 
f i r s t -o rde r  l a g  which, as t h e  gain reduces, 
becomes longer .  This,  then,  allows the  
r u l e  of thumb which i s  almost always t r u e  and 
namely, “veloci ty  l i m i t i n g  tends t o  s t a b i l i z e  

B - ,  
4 

Figure 2.- Root l o c i  of 
a type 1 system. 

is e a s i l y  remembered, 
the system. I t  

Corollary: 

A type 1 system which i s  condi t iona l ly  s t a b l e  can be exc i ted  i n t o  a L 

constant amplitude, constant frequency o s c i l l a t i o n  c h a r a c t e r i s t i c  of a 
l i m i t  cycle. 

Proof: 

A condi t ional ly  s t a b l e  type 1 system 
must by de f in i t i on  be unstable  f o r  low 
gains  as  w e l l  as high gains but s t a b l e  f o r  
t h e  operating poin t  gain.  The root  l o c i  of 
poles  nearest t h e  o r i g i n  f o r  a high order  
system can be of t h e  form i n  f igu re  3 . 3  If 
t h e  gain i s  decreased from t h e  operat ing 
poin t  (by ac t ion  of l i m i t i n g ) ,  t h e  charac- 
t e r i s t i c  poles of t h e  system move i n  
reverse  d i rec t ion  t o  t h e  arrows. An Figure 3 . -  Root l o c i  of a 
increase i n  the  l i m i t i n g  ac t ion  which 
causes the gain t o  decrease t o  poin t  A type 1 system. 

A condi t ional ly  s t a b l e  system i s  def ined here as one i n  which 
e i t h e r  increasing o r  decreasing t h e  l i m i t e r  gain from t h e  operat ing value 
r e s u l t s  in t h e  closed-loop poles  moving i n t o  t h e  r i g h t  ha l f  plane.  

by any poles which c ross  i n t o  t h e  r i g h t  ha l f  plane and back t o  the  l e f t  
ha l f  plane as the  l i m i t e r  gain i s  var ied  from zero t o  the  operat ing 
po in t .  A s i m i l a r  argument t o  the  one presented here  shows t h e  coro l la ry  
t o  be t rue i n  these  cases f o r  systems of any type number. 

condi t iona l ly  s t ab le  

2 

Conditionally s t a b l e  designs can be obtained i n  high-order systems 3 

3 
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r e s u l t s  i n  an increas ing  amplitude decreasing frequency o s c i l l a t i o n  of 
t h e  system, s ince  poin ts  from A t o  B of t h e  l o c i  are i n  t h e  r i g h t  half  
plane.  
cause l o c i  t o  move i n  t h e  l e f t  ha l f  plane from po in t  B r e s u l t s  i n  a 
decrease i n  o s c i l l a t i o n  amplitude. Point B, therefore ,  i s  a s t a b l e  
l i m i t  cycle from which the  system i s  unable t o  r e ~ o v e r . ~  The system can 
be shocked i n t o  t h i s  l i m i t  cycle by la rge  input t r a n s i e n t s  such as s t eps  
which cause a l a r g e  equivalent gain reduction of  t h e  l i m i t e r .  

A f u r t h e r  growth i n  t h e  amplitude of o s c i l l a t i o n ,  which would 

A 
Rule 11. A type 2 con t ro l  system, which 

i s  designed t o  have good performance f o r  s m a l l  

d i t i o n a l l y  s t a b l e  design, will have a t r a n s i e n t  / b  

performance which becomes increasingly poor as 
t h e  s i z e  of t h e  t r a n s i e n t  i s  increased ( i . e . ,  
t h e  equivalent gain i s  decreased).  

s igna l s  ( l i n e a r  region) and which i s  not a con- ,2 

Proof: Figure 4.- Root l o c i  of 
a type 2 system. 

A root  locus f o r  a type 2 system f o r  
m-1 yvlL.u c,c c l n s e  t.n t.he o r i g i n  will be as ind ica ted  i n  f igu re  4. As  t he  gain 
i s  decineased (by- l i ; - . . . < L z - -  llii Liiil5 GL- on+;  Lion) ~ r o m  LIE operat ing point  A, tile i:iiai-ac- 
t e r t s t i c  roots  move t o  a pos i t i on  corresponding t o  decreased frequency 

s i e n t  which gives  a l a rge  amount of l imi t ing  will be character ized by a 
number of o s c i l l a t i o n s  before  t h e  system 
comes t o  res t .  Figure 5 i l l u s t r a t e s  t h e  
c h a r a c t e r i s t i c  s t e p  response f o r  several  
s t e p  input magnitudes. This, then  allows 
a second ru l e  of thumb, namely, "accelera- 3 
t i o n  l i m i t i n g  tends t o  des tab l ize  the 0 
system. " 

Corol lary : 

axid decrcaced 4 a m n ~ i  uu'Lr -__ n e -  T i ~ d s ,  t h e  respgnse of' t,hc svster?, Ls a. 1a.l-ge tr&q- 

A condi t iona l ly  stable ty-pe 2 system 
Ti me which i s  designed t o  be s t ab le  f o r  small 

s igna l  amplitudes may be exc i ted  (by a 
l a r g e  t r a n s i e n t )  i n t o  an increasing ampli- 
tude , decreasing frequency, unstable mode .' 

(by o the r  changes i n  system parameters) t h e  l i m i t  cycle disappears before  
t h e  locus  i s  completely i n  the  l e f t  ha l f  plane.  
because l i n e a r  techniques ce r t a in ly  cannot expla in  a l l  nonl inear  phe- 
nomena. 
l i m i t  cycles  and o s c i l l a t o r y  t r ans i en t  responses t h i s  subject  i s  not 
considered i n  t h i s  inves t iga t ion .  

a proof t h a t  a constant amplitude l i m i t  cycle  can e x i s t  i n  a high-order 
type 2 system. 

Figure 5.-  Time s t e p  
responses of a satu- 
r a t ed  type 2 system. 

4Kalman ( r e f .  2 )  states t h a t  as po in t s  A and B move c lose r  toge ther  

This i s  not  su rp r i s ing  

Since i n  cont ro l  system design one genera l ly  t r ies  t o  avoid both 

5See footnote  3, chapter 11, and refer  t o  t h e  coro l la ry  of Rule I f o r  
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Proof: 

A root locus f o r  t he  poles  c loses t  t o  t he  o r i g i n  of a type 2 condi- 
t i o n a l l y  s t a b l e  system could be as indica ted  i n  f igu re  6 .  
l e n t  gain of t he  system i s  decreased by 
l imi t ing  ac t ion ,  t he  poles move i n  a 
reverse d i rec t ion  t o  t h e  arrows. The 
response of  t he  system becomes less  and 
less  damped as the  input t o  t h e  l i m i t e r  
grows ( i . e . ,  t h e  g rea t e r  t h e  l imi t ing  
a c t i o n ) .  If t h e  system receives  a 

A s  t h e  equiva- 

A 

t r ans i en t  which makes the  equivalent 
gain less  than t h a t  corresponding t o  
poin t  B, t he  response will diverge i n  a 
growing amplitude , decreasing frequency 
mode, since a f u r t h e r  growth i n  the  
response gives g rea t e r  l i m i t i n g  ac t ion  
which causes t h e  poles  t o  move c lose r  
t o  t h e  or ig in  i n  t h e  r i g h t  ha l f  plane.  

Rule 111. A type 3 system which i s  
designed f o r  s a t i s f ac to ry  performance f o r  
small s igna l  l e v e l s  can always be exc i ted  
i n t o  a growing amplitude, decreasing 
frequency, unstable mode .6 

Proof: 

Figure 6.- Root l o c i  of a 
condi t iona l ly  s t ab le  
type 2 system. 

With reference t o  f igu re  7,  it i s  seen 
t h a t  a type 3 system must always be condi- 
t i o n a l l y  s t ab le .  Therefore, a l a rge  input 
can cause l imi t ing  ac t ion  t o  decrease t h e  
gain so t h a t  two poles  a re  i n  t h e  r i g h t  Figure 7.- Root l o c i  of 
ha l f  plane. a type 3 system. 

? 
rc. 
k- 
C 

2.3 Discussion 

The root-locus method gives considerable information on what kind 
of response t o  expect as a funct ion of t h e  s i z e  of t h e  input .  It can be 
used f o r  saturated sampled-data systems by using root-locus p l o t s  i n  t h e  
z plane,  examples of' which a re  shown i n  chapter I V .  
t h e  root-locus method, however, i s  t h a t  no quan t i t a t ive  information i s  
ava i lab le ,  t h a t  i s ,  t he re  i s  no measure of  t h e  s i z e  of t h e  input which 
causes a poor response. I n  order  t o  gain quan t i t a t ive  information, it 

The drawback of 

1 

60ne should a l so  note t h a t  a constant amplitude, constant frequency 
l i m i t  cycle can e x i s t  for high-order type 3 systems. 
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N.s) Z> x ( t )  

i s  necessary t o  r e s o r t  t o  a d i f f e ren t  technique. 
be t h e  phase space; however, it i s  the opinion of t he  author t h a t  ana lys i s  
of a system of t h i r d  order  or fou r th  order  by v i sua l i z ing  t r a j e c t o r i e s  i n  
a phase space i s  very d i f f i c u l t .  A second method suggested by Kalman 
( r e f .  10) uses a transformation t o  a s t a t e  space where t h e  system can be 
approximated by a dominant second-order mode. The problem i s  then solved 
i n  a phase plane and the  r e s u l t s  a r e  transformed back t o  t h e  o r i g i n a l  
s t a t e  space. Although t h i s  method appears t o  have some m e r i t ,  it i s  only 
approximate, and the re  may be a question of which i s  t h e  dominant mode. 
With reference t o  t h e  preceding root-locus presenta t ions ,  one could s ta te  
t h a t  a type 1 system usua l ly  has a f i r s t -o rde r  dominant mode, a type 2 
system usua l ly  has a second order ,  and a type 3 system usua l ly  has  a 
t h i r d  order .  This would m e a n  t h a t  Kalman’s method could not be used f o r  
a type 3 system. A t h i r d  method was  proposed by t h e  author  and T r i p l e t t  
( ref .  5 )  f o r  t h e  analysis and synthesis of an a i r c r a f t  au topi lo t  with 
control-surface rate l imi t ing .  Control-surface rate l i m i t i n g  i s  equiva- 
l e n t  t o  s a tu ra t ion  of t h e  input t o  the p l an t ,  and, therefore ,  t h i s  method 
can be  used f o r  any sa tura ted  control  system. 
t o  as t h e  switch time method. 

I u I I U  W L l l S .  

One p o s s i b i l i t y  might 

The method w i l l  be referred 
It provides t h e  con t ro l  system designer 

n -  7 7 - - - a m - .  

cv ) 
G(s) 

A means f o r  quickly ca lcu la t ing  the  response t i m e  f o r  l a r g e  
s t e p  inputs .  This i s  described i n  sec t ion  2.5.2. 

A R e m s  f o r  synt.hesizing nonlinear funct ions which provide 
near optimum response f o r  large inputs .  This i s  described 
i n  sec t ion  2.6. Section 2.7 &iscubbe5 soice 0; L:ie l izi+a- 
t i o n s  and how root  l o c i  may be used i n  conjunction with t h e  
switch time method t o  overcome some of these  l i m i t a t i o n s .  

A d i r e c t  extension of items (l), ( 2 ) ,  and (3)  t o  sampled- 
da ta  systems. This extension i s  discussed i n  sec t ion  2.8. 

2 .4  Switch Time Method, Analysis 
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response o f  t h e  output,  c ( t ) ,  can be computed completely, s ince  t h e  
system can be t r e a t e d  by piecewise l i n e a r  ana lys i s .  
l i n e a r  for  m ( t )  less  than +B. For m ( t )  g r ea t e r  than ?B, t h e  response 
i s  simply t h e  response of G ( s )  f o r  an input  s t e p  of magnitude +B, plus  
i n i t i a l  conditions.  
has a high frequency response equal t o  a constant o r  at least ,  f o r  a 
s t e p  in to  D ( s )  t he  output response, m ( t ) ,  w i l l  be very fast  during the  
i n i t i a l  pa r t  of t h e  t r a n s i e n t .  Therefore, m ( t )  f o r  a s t e p  input ,  r ( t ) ,  
w i l l  i n i t i a l l y  jump t o  a value dependent on t h e  s i z e  of t h e  input s t e p .  
This value i s  usua l ly  easy t o  ca lcu la t e  from t h e  high frequency response 
of D ( s )  , One can, therefore ,  ca l cu la t e  t h e  s i ze  of t h e  input  s t e p  which 
f i rs t  causes sa tu ra t ion .  Below t h i s  amplitude t h e  response i s  l i n e a r  and 
i s  given by equation (l), i f  zero i n i t i a l  condi t ions a re  assumed. 

The system i s  

For almost a l l  systems D ( s )  w i l l  be a network which 

I t - G ( s )  D ( s )  

(L-’[ F( s ) ]  reads t h e  inverse Laplace transform of 
L [ f ( t ) ]  reads t h e  Laplace transform of 
l a r g e  enough t o  cause sa tu ra t ion ,  t h e  response, c ( t ) ,  i s  given by 
equation ( 2 )  so long as I m ( t )  I > B .  

F( s )  , s imi l a r ly  
f ( t ) . )  For an input  s tep ,  Ro, 

and m ( t )  is given by equation (3 )  

For Ro 
( 3 ) ,  thus,  I m ( t )  I given by equation (3)  i s  genera l ly  a decreasing func- 
t i o n  of time. A s  a r e s u l t  a c e r t a i n  t i m e ,  a f t e r  t h e  appl ica t ion  of t he  
s t ep ,  has t o  pass before  I m ( t ) l  i s  less than B .  Since m(t) = x ( t )  
f o r  1 m ( t )  1 _< B, t h i s  i s  t h e  value of t i m e  during which t h e  input  t o  t h e  
p l a n t ,  x ( t ) ,  i s  at i t s  maximum value.  
t o  as t h e  f i r s t  reversa l  t i m e ,  T1, and with reference t o  equation ( 3 )  it 
i s  seen t o  be a funct ion of t h e  s t e p  input  magnitude, Ro. If a way can 
be found f o r  r e l a t i n g  t h e  first r eve r sa l  t i m e  t o  some c h a r a c t e r i s t i c  of 
t he  output response, then T1, as a funct ion of input s t e p  magnitude, can 
be used as a c r i t e r i o n  of design. This can be accomplished by defining 
an optimum T1 as the  f i rs t  r eve r sa l  time after t h e  appl ica t ion  of the  
input  s tep,  which i s  such t h a t  i f  succeeding motions of t h e  bounded 
va r i ab le  are optimum, t h e  e r r o r  and i t s  der iva t ives  w i l l  be reduced t o  
zero i n  a minimum t i m e .  Consider as an example the  system shown i n  

pos i t ive ,  t he  s ign  i s  taken as pos i t i ve  i n  equations ( 2 )  and 

The value of t h i s  t i m e  i s  r e fe r r ed  

9 
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f igu re  8 with G ( s )  equal t o  l/s2 and B equal t o  uni ty .  For an input 
s t ep ,  r ( t )  = Rou(t) ,  t he  problem i s  t o  determine t h e  optimum motion of 
so t h a t  E ( t )  i s  res tored  t o  zero i n  a minimum t i m e .  
t h e  bounded var iable ,  x, equals 
wel l  known f a c t  t h a t  i n  order f o r  this system, with bounded accelerat ion,  
t o  s t a r t  from r e s t  a t  one point  and come t o  r e s t  at another i n  the  minimum 
time, t he  system must acce lera te  a t  i t s  m a x i m u m  ha l f  of t he  t i m e  and 
decelerate  t he  o ther  h a l f .  The time h i s to r i e s  of x, 6 ,  and c for an 
optimum s t ep  response a re  shown i n  figure 9 (a ) .  
t i m e  h i s to ry  of 

x 
For t h i s  example, 

‘d, the output accelerat ion,  and it i s  a 

It i s  apparent from t h e  
t h a t  t h i s  must be the  optimum response s ince 

( & ) a t  i s  a m a x i m u m  i n  the  given time. i;?” 
An area  in tegra t ion  of  t h e  t r iangular  curve f o r  6 ( t )  i n  f igu re  9(a)  

gives t h e  desired re la t ionship  between %, t he  optimum f i r s t  reversa l  
t i m e  T1, and the  minimum response time, Tm. 

(4) 
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Note that  f o r  both examples, t he  t r a n s i t i o n  time f o r  x t o  go from 
one limit t o  t h e  o ther  i s  assumedto be zero.  This i s  only t r u e  f o r  an 
i n f i n i t e  gain l i m i t e r  o r  an i d e a l  r e l ay .  This i s  one l i m i t a t i o n  i n  t h e  
appl icat ion of t h e  switch t i m e  method t o  f i n i t e  gain s i t u a t i o n s .  It i s  
an approximation which only becomes exact f o r  i n f i n i t e  gain l imi t e r s  o r  
i n f i n i t e  inputs .  
shown i n  succeeding sec t ions  i l l u s t r a t e  very good r e s u l t s  f o r  most 
sa tura ted  con t ro l  systems. 

Applications of t h e  ana lys i s  method, however, which are 

- 
r ( f )  + q- - KE S 2  L 

The t r ans fe r  funct ion of f i g u r e  10 i s  I 

42 
’ i  

Equating the unknown coe f f i c i en t s  of equation (6)  t o  equation ( 5 )  gives 
& = 100, K; = 14 .0 .  From equation ( 3 )  and with reference t o  f igu re  10 
m ( t ) ,  f o r  s t ep  inputs  which sa tu ra t e  t h e  l i m i t e r ,  i s  given by 

(7) \ 

m(t) =L-’[(T RO - &)E - 21 = bo - $),- K;t 

Equation (7)  i s  v a l i d  u n t i l  
Note from f i e r e  10 t h a t  f o r  

m ( t )  i s  smaller than un i ty ,  t h e  l i m i t  l e v e l .  
& = 100, sa tu ra t ion  w i l l  occur f o r  a s t e p  



input ,  Roy g rea t e r  than 0.01. 
equal t o  uni ty  i n  equation (7)  and solve f o r  T,, t he  first time x wi l l  
come o f f  i t s  l i m i t .  

For t h i s  system, then, one can set m ( t )  

Solving equation (8) f o r  T1 and recognizing t h a t  T, must be pos i t i ve  
gives ( f o r  & = 100, K;, = 14) 

(9) T1 = -0.14 + 42%- 0.0004 

Equation (9)  i s  only va l id  f o r  
previously mentioned, s a tu ra t ion  does not occur f o r  
value.  

Ro greater  than 0.01, s ince,  as w a s  
Ro l e s s  than t h i s  

It has been shown t h a t  t h e  system must overshoot because of t he  
l i m i t i n g  ac t ion  i f  

oht.n.i_ne!d from equations ( 4 )  and ( 9 )  and compare the  r e s u l t s .  

magaitude, Roy  i s  g rea t e r  than 0.12, overshoot as a r e s u i t  oI" I i rni t i I ig  
ac t ion  must e x i s t .  
inputs  a t  which overshoot caused by l imi t ing  must occur, and the  root  
locus can be used t o  determine qua l i t a t ive ly  what de t e r io ra t ion  i n  
response may be expected above t h i s  value. 

T1, given by equation (9), becomes g rea t e r  than the  

This com- 
LF en+ blilrciiii i m, I r n  given by equation (4) . One c m  t ~ ~ ~ i s  p ~ c ) i . .  T~ v-ei-sijs R, as 

~ ~ o - : - , - - ~ - ~  ..I_.. . ~ _ - - -  _ _  i c  _ _ _ _  chn~..m i n  ti-g.ire 11 :jhpyp it. i r ,  see17 t .ha t ,  if t he  inout  s t e p  

Thus switch time analysis  gives t h e  s i z e  of  t h e  

0 2  

L= 

E 

Q) 
v) 

c. 
a, 

.- 
+ I  

t r 
L O  
.- 

.4 .8 I .2 I .6 
Input step magnitude, R, 

Figure 11.- F i r s t  reversa l  times of example system. 
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2.5 Calculat ion of Response T i m e s  

A s  has been mentioned, s a tu ra t ion  i n  a con t ro l  system i s  one type of 
nonl inear i ty  for which t h e  output response can be ca lcu la ted  exact ly ,  
s ince  the system can be t r e a t e d  l i n e a r l y  on a piecewise b a s i s .  It i s  t h e  
opinion of t h e  author t h a t  these  exact t i m e  h i s t o r y  ca lcu la t ions  are much 
too  laborious f o r  hand ca lcu la t ions  except i n  t h e  simplest  cases  and, i f  
exact r e su l t s  are desired,  one should use e l ec t ron ic  computers. 
t h i s  standpoint t he  method described here  i s  approximate and i s  intended 
f o r  use by those who des i re  t o  obta in  quickly t h e  approximate behavior of 
t he  output of a sa tura ted  cont ro l  system when t h e  input command i s  a s t ep .  

From 

When s t e p  inputs  a re  appl ied t o  a sa tu ra t ed  cont ro l  system the  
problem of t h e  ca l cu la t ion  of response t i m e s  can be subdivided i n t o  th ree  
categories  dependent on t h e  s i z e  of t h e  input .  These ca tegor ies  are 
(1) s m a l l  inputs  where t h e  system i s  l i n e a r ,  (2 )  medium s i z e  inputs  where 
t h e  time t h e  system i s  sa tura ted  i s  a s m a l l  percent of t he  t o t a l  t ran-  
s i e n t  timey7 and (3 )  l a rge  inputs  where sa tu ra t ion  occurs a l a r g e  per- 
centage bf t h e  t o t a l  t r a n s i e n t  t h e .  O f  these  th ree  ca tegor ies ,  an 
approximate ca lcu la t ion  of t h e  response t i m e  can be made f o r  (1) and ( 3 ) .  
The second category represents  a t r a n s i t i o n  region where the  system 
response i s  s l i g h t l y  nonlinear and t h e  response t i m e  i s  not much g r e a t e r  
than tha t  of t h e  l i n e a r  region. The proposed methods will be demonstrated 
using the example and coe f f i c i en t s  previously computed f o r  f i g u r e  10. 

2.5.1 Linear region.- The t r a n s f e r  funct ion r e l a t i n g  C/R f o r  
f i gu re  10  i s  given i n  equation ( 5 ) .  If one assumes t h a t  r ( t )  i s  a s t e p  
of magnitude 
can be wri t ten as ( f o r  

R o y  ( r ( t )  = R o u ( t ) ) ,  then the  e r r o r  t i m e  funct ion,  ~ ( t ) ,  
wn and I; of a r b i t r a r y  value) 

The e r ro r  t i m e  funct ion f o r  t h i s  second-order example i s  seen t o  be a 
damped s i n e  wave whose amplitude i s  propor t iona l  t o  t h e  magnitude of t h e  
input ,  R,. 
sa t i s fac tory  l i n e a r  feedback con t ro l  system i s  composed of exponential  

I n  general ,  t h e  e r r o r  time funct ion f o r  a s t e p  input  t o  any 

7Transient t i m e  i s  defined as t h e  t i m e  from the  i n i t i a l  appl ica t ion  
of t h e  step u n t i l  t he  e r r o r  i s  smaller than some number, and remains 
smaller than t h i s  number i n d e f i n i t e l y .  If t h e  t r a n s i e n t  t i m e  i s  i n f i -  
n i t e ,  t h i s ,  by de f in i t i on ,  means t h e  system i s  e i t h e r  uns tab le  o r  t h e  
response has a constant amplitude o s c i l l a t i o n .  
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. decays and/or damped sinusoids whose magnitudes are proport ional  t o  the  
magnitude of t h e  input s t ep .  It is  thus c l e a r  t h a t  t h e  time required t o  
reduce the  e r r o r  t o  zero i s  i n f i n i t e .  
def ining the  response time of a l i n e a r  system. There a r e  two reasonable 
ways t o  define a use fu l  response t i m e .  F i r s t ,  response time can be  
defined as t h e  t r a n s i e n t  time (see  footnote 7, chapter  11); second, t he  
response t i m e  can be defined as t h e  time required af ter  t h e  appl ica t ion  
of t he  s t ep  f o r  t h e  e r r o r  t o  be reduced (and s t a y  below) a given per- 
centage of t h e  input  s t e p  magnitude. The second method i s  general ly  
r e fe r r ed  t o  as t h e  s e t t l i n g  time ( r e f .  11) . The f i rs t  method has t h e  
advantage i n  many instances of being a c r i t e r i o n  which has p r a c t i c a l  
meaning t o  t h e  cont ro l  designer and shows a l i n e a r  system t o  have a 
response t i m e  which increases  with the magnitude of t h e  t r a n s i e n t  dis-  
turbance. The method has the  disadvantage t h a t  it i s  very complicated 
t o  ca l cu la t e  t h e  response t ime. The second method has the  s t rong  advan- 
tage of s impl ic i ty ,  and f o r  t h i s  reason it w i l l  be used i n  t h i s  inves t i -  
gat ion.  The disadvantage of t h e  second method i s  i n  t r y i n g  t o  use it i n  
nonlinear problems where t h e  cha rac t e r i s t i c s  of t h e  s t e p  response change 
s ign i f i can t ly  with t h e  s i ze  of the input.  I n  t h i s  case t h e  method loses  
i t s  s impl i c i ty  and one should probably use the  f i rs t  method. 

This l eads  t o  a d i f f i c u l t y  i n  

or t h e  response time 

T r = - -  i n  10 
- 0.33 sec 7 

2.5.2 Saturated region.- I f  the input  i s  i n  the  sa tura ted  region a 
l a rge  percentage of t he  t r ans i en t  time, then it seems reasonable t h a t  a 
good c r i t e r i o n  f o r  t he  response time would be t h e  response time of t he  
r e l ay  o r  bang-bang so lu t ion .  A method of  accomplishing t h i s  i s  bes t  
described using the  previous second-order example. I n  order t o  ca l cu la t e  
t he  response time, one needs the  actual  f irst  r eve r sa l  time, t h e  
optimum f i rs t  r eve r sa l  time, and the  minimum response time as funct ions 
of t he  input s t ep .  The f i r s t  two were computed f o r  t h i s  example i n  
sec t ion  2 . 4  with r e s u l t s  given i n  f igure 11. The minimum response time 
i s  given as a funct ion of t he  s tep  magnitude i n  equation ( 4 ) .  
r e s u l t s  a r e  shown i n  f igure  12. 
we shall assume the  response time i s  equal t o  the  minimum u n t i l  one 
reaches the  in t e r sec t ion  point  of the computed l i n e a r  response time and 
the  minimum response time curves. 
although t h e  response t i m e  of the  l i z e a r  system m-d t h e  minimm response 

The th ree  
For inputs  l e s s  than point  A (Ro = 0.12), 

This i s  a reasonable approximation, 
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( a )  F i r s t  reversal t i m e .  

? 
W 
P 
0 

A .4 .8 I .4 1.6 
Input step magnitude, Ro 

.4 -8 1.2 1.6 
Input step magni tude,  Ro 

( b )  Response t i m e .  

Figure 12.-  Calculation of response time of example system. 
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time have d i f fe ren t  de f in i t i ons .  
than A are ca lcu la ted  i n  t h e  following manner. Assume the  input i s  equal 
t o  0.64, f o r  example. 
reversa l  time f o r  t h e  system f o r  t h i s  s i ze  s tep .  The f i rs t  reversa l  t i m e  
i s  grea te r  than the  optimum so the  system must overshoot. 
motions of t h e  system were optimum, the system would overshoot t o  a value 
given by point  C ( a r r iv ing  there  with all der iva t ives  zero) .  
required t o  a r r i v e  at t h i s  point is given by t h e  minimum curve f o r  an 
input o f  1.0 i n  f igu re  l 2 ( b ) .  Calling t h i s  t i m e  TC and reading i t s  
value from t h e  curve gives 
point  C with only the  e r r o r  having a value, so it i s  equivalent t o  a 
s t ep  of magnitude equal t o  the  difference between C and B which i s  
0.36 u n i t s .  
f o r  a s t e p  of 0.36 units. From here one proceeds t o  point  E and reads 
TE 
and D then gives a s t ep  of 0.14 un i t s  magnitude (point  F) and very l i t t l e  
overshoot f o r  t h i s  input i s  
predicted.  Reading response 
t i m e  f o r  t h i s  magnitude input 
from f igu re  12(b)  gives 
TF = 0-7  secnnd. The calcu- 

0.64 u n i t  s t ep  i s  thus  

The response t i m e s  f o r  inputs  g rea t e r  

One f irst  proceeds t o  point  B which i s  t h e  f i rs t  

If succeeding 

The time 

TC = 2 seconds. The system starts from 

From t h i s  one proceeds t o  point  D, t h e  f i r s t  reversa l  t i m e  

from f igu re  12 (b ) ,  TE = 1 . 4  seconds. The difference between point  E 

1.00- 

.64 -- 
a la tea  response Liiiie yor 

i 
0 2 4 6 

T y =  T c +  TE+ TF= 4.1 sec (14) Time, sec 
Figure 13.- Sketch of response f o r  

This i s  one of t h e  poin ts  on 
the  ca lcu la ted  curve shown 
i n  f igure  12 (b ) .  The t i m e  
response of t he  system i s  
sketched i n  f igu re  13. One 
proceeds i n  a s imi ia r  mul~ler' 
t o  ca l cu la t e  response t i m e s  
f o r  inputs  of o ther  s i zes .  

The method out l ined 
above f o r  pred ic t ing  t h e  
response t i m e  f o r  l a rge  
inputs  i s  approximate i n  
many cases and needs some 
c l a r i f i c a t i o n  with regard t o  
when it i s  exact and what i t s  
accuracy i s  i n  general .  With 
regard t o  accuracy, t he  
response t i m e  of t he  example 
system w a s  measured from 
analog computer r e s u l t s ,  and 
the  ca lcu la ted  and measured 
curves a re  shown i n  f igu re  111 

6 

0 
Q) cn 
a - 4  
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The measured curves were obtained by measuring t h e  time required f o r  t he  
e r r o r  t o  reduce and remain below 0.01 units f o r  inputs  g rea t e r  than 
0.1 un i t s .  Data f o r  s t ep  inputs  with amplitudes l e s s  than 0.10 u n i t s  
were obtained from t h e  de f in i t i on  of response time as t h e  time f o r  t he  
e r r o r  t o  be reduced and remain below 10 percent of t he  input s t ep  m a g n i -  
tude.  The measured and ca lcu la ted  r e s u l t s  a r e  seen t o  be i n  c lose 
agreement. 

The method i s  exact when an i d e a l  r e l ay  i s  used i n  place of t he  
l i m i t e r  and the  p lan t  t r a n s f e r  funct ions a r e  e i t h e r  f irst  o r  second 
order .  
be obvious. For the  second-order case it can be shown by means of t he  
phase plane. 

The v a l i d i t y  of t h i s  statement f o r  the  f i r s t - o r d e r  system should 

Consider t he  system shown i n  f igu re  15. Step inputs  t o  

1 I 

Figure 15.- Block diagram of a r e l ay  cont ro l  system. 

t h i s  system a r e  equivalent t o  i n i t i a l  conditions on 
can use e i the r  E and 6 ,  since the  
t r a j e c t o r i e s  a re  i d e n t i c a l  except f o r  s ign .  
of parabolas ( see ,  e .g. , r e f .  10); a t y p i c a l  t r a j e c t o r y  f o r  one input i s  
shown i n  f igure  16. 
obtained by tak ing  IAI+IBI assthe input s t ep  magnitude and using the  mini- 

time required t o  go from B t o  C i s  obtained by 
tak ing  IBItlC( as the  input magnitude and using 
the  minimum curve of f igu re  l 2 ( b ) ,  e t c .  The 
t o t a l  time i s  obtained by summing all t h e  indi-  

go t o  the  o r ig in  from the  end point  where 
FlGgge-Lotz and Lindberg ( ref .  12 )  have shown 
the  system follows the  switching equation. 
The switching equation i s  l i n e a r  and f i r s t  
order  i n  t h i s  example, and the  response time 
can be readi ly  estimated. What i s  done then Switching 
f o r  higher order systems i s  t o  approximate 
them by a second-order relay-type system. 
accuracy of t h e  ca lcu la t ion  depends on the  
degree t o  which t h i s  approximation i s  va l id .  

e; therefore ,  we 
c and 6 as phase space var iab les  o r  

The t r a j e c t o r i e s  a re  p a r t s  

The time f o r  t he  t r a j e c t o r y  t o  go from A t o  B i s  

mum curve i n  f igure  1 2 ( b ) .  Similar ly ,  t he  i 

vidual  times and adding the  time required t o  C 

c =-oc 
The Figure 16.- Phase plane > 

t r a j e c t o r i e s  f o r  a 
r e l ay  cont ro l  system. 

This statement can be v e r i f i e d  by reviewing sec t ion  2 .4  where the  8 

minimum curve w a s  derived. 
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The sampled-data r e s u l t s  presented i n  chapter I V  f o r  th i rd-order  systems 
show t h e  method gives  a good idea  of the de t e r io ra t ion  of t h e  response 
with t h e  s i z e  of t h e  inpu t .  This,  of course, i s  a l l  t h a t  i s  intended 
f o r  t he  method, and, thus ,  it s a t i s f i e s  t h e  o r i g i n a l  purpose f o r  which 
it w a s  developed. The advantage of the method i s  i t s  s impl i c i ty .  The 
curves used f o r  ca l cu la t ion  have addi t ional  use i n  t h e  determination of 
nonl inear  funct ions which, when introduced i n  t h e  system, give almost 
optimum response. The subjec t  of t h e  determination of nonl inear  func- 
t i o n s  t o  improve poor responses i s  considered next .  

2 .6  The Determination of Nonlinear Fbnctions 
t o  Improve t h e  Step Response 

The proposed method f o r  t h e  design of n o n l i n e a r i t i e s  t o  improve t h e  
s t e p  response i s  based on t h e  idea  of forcing t h e  f i r s t  r eve r sa l  o r  
switching time t o  be equal t o  t h e  f i r s t  r eve r sa l  time of t h e  optimum 
bang-bang system. This ob jec t ive  i s  achieved by introducing a nonlinear 
filriction into t3e e r r o r  ciiaJ-hiiei (for cxzzple ,  mzking the eyror gain a 
f ~ n c t i ~ n  of' the  e r r o r )  o r  i n t o  t h e  output der iva t ive  cliianiiel (rsr 
.------1 - .  . l_.-.L.L,l ~ - % , >  - - v ~ - b ~ ~ r ~ t ~  t h e  cu?.-n?t, ve loc i ty  feedback a nonl inear  i'unction of  ihe 
output ve loc i ty  j . 

This  method w a s  f i r s t  reported i n  reference 5 .  I n  t h i s  previous 
repor t  both a type 2 third-order  and a type 2 fourth-order p l an t  were 
designed with considerable success, although t h e  l i m i t a t i o n s  of t h e  
method and the  theory behind t h e  derivation w e r e  not very w e l l  under- 
s tood at tile t i in?.  I n  t h i s  sec t ion  the met,hod will f i rs t  be explained. 
17, :.e11 then be shown t h a t  f o r  second-order optimum bang-bang systems, 
it gives  prec ise ly  t h e  same r e s u l t  as t h e  phase plane.  

T I  

The method i s  b e s t  described by working an example. The example 
chosen i s  the  simple second-order system shown i n  f igu re  10  whose a c t u a l  
and optimum first  r eve r sa l  t i m e s  a r e  p lo t t ed  i n  f i g u r e  1 2 ( a ) .  
w i l l  r e s u l t  i n  a nonl inear  funct ion in  p lace  of e i t h e r  
previously mentioned, i f  t h e  s t e p  input i s  g r e a t e r  than 0.12 u n i t s ,  t h e  
system must overshoot. 
u n t i l  we a r r i v e  at a condi t ion which would have overshoot.  Above t h i s  
condi t ion K, and/or K; 

The design 
A s  w a s  

Kf = 100 and K;l = 1 4  

w i l l  be made nonl inear  t o  prevent t h e  overshoot.  

K, o r  K;. 

We s h a l l  thus use t h e  gains  

Equation (7) gives m ( t )  as a function o f  Ro, t ,  K, , and K;. This 
equat ion i s  v a l i d  u n t i l  t h e  f i r s t  reversal  t i m e ,  T1. Since t h e  optimum 
f i rs t  r eve r sa l  curve ( f i g .  1 2 ( a ) )  gives Ro as a funct ion of TI and 
the  value of 
o r  K; at T I .  

m(T1) i s  equal t o  1, equation (7)  can be solved f o r  Q 
These gains can be p lo t ted  as funct ions of e r r o r  o r  output 
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rate i n  order  t o  determine a funct ion of a s ing le  variable’ ( i . e . ,  & ( E )  
o r  Ke(6)). Wnen e i t h e r  one o r  t h e  o the r  i s  introduced i n t o  t h e  system 
i n  place of t h e  constants ,  it will give t h e  des i red  f irst  r eve r sa l  t i m e  
f o r  a zero overshoot output response.” Note t h a t  what we are ac tua l ly  
doing i s  tak ing  t h e  optimum re l ay  so lu t ion  a t  one t i m e  ( t h e  f i r s t  rever- 
sal  time) and designing nonl inear  funct ions which fo rce  t h e  bounded var i -  
ab le  of t h e  ac tua l  system t o  reverse at t h e  same t i m e  f o r  t h e  same input  
as the  optimum re l ay  system. 

* 

A t  t he  f i r s t  r eve r sa l  t i m e ,  T1, ( f o r  l a r g e  inputs  which cause x 
t o  be saturated)  

Ro(T1) i s  obtained from f igu re  1 2 ( a ) ,  t h a t  i s ,  it i s  t h e  optimum re lay  
solut ion.  The output ve loc i ty ,  6 ,  at t h e  r eve r sa l  t i m e ,  T1, i s  

; ( T i )  =L-’ [BG(s)] = T i  

One can solve equation (7)  f o r  K, t o  give 

If K; 
obta in  
funct ion of a s ing le  var iab le  which when introduced i n  place of t he  
constant gain & on f i g u r e  10  w i l l  give the  optimum first  reversa l  
t i m e  . 

i s  assumed t o  be a constant (K; = 1 4 )  and 
Kc(€) (from eq. (17)) and 

m(T1) = 1, we can 
,(T1) (from eq. (15) ) ;  t h e  nonlinear 

11 

One need not f i n d  only funct ions of s ing le  va r i ab le s .  For example 9 

one could obta in  K ; I ( E ) .  
be required which i s  undesirable .  These funct ions of more than one 
var iab le  have not  been s tudied,  s ince t o  be r ea l i zed  they requi re  a more 
complex system. 

curve may be s h i f t e d  upward t o  give any des i red  overshoot t he  designer 
requi res .  Although t h i s  modification i s  recognized, it has not been 
s tudied  i n  t h i s  inves t iga t ion .  

go from one l i m i t  t o  another i s  assumed zero.  Since t h i s  assumption can 
never be va l id  except f o r  an i d e a l  re lay ,  it i s  preferab le  t o  make 
m(T1) = 0 i n  equation ( 7 ) .  
equation (17) which improves t h e  approximation. 

However, i n  t h e  i n s t a l l a t i o n  a mul t ip l i e r  would 

10 One need not design f o r  zero overshoot. The optimum f i rs t  reversa l  

-, 
Note again t h a t  t h e  t r a n s i t i o n  t i m e ,  t h a t  i s ,  t h e  t i m e  f o r  m ( t )  t o  11 

This gives KE( , )  a s l i g h t l y  lower value than 
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Simi lar ly  one c a n  solve equation (7) for Ki t (&)  which i s  given i n  

equation (18) 

and use equation (16) t o  obta in  t h e  nonlinear func t ion  of  a s ing le  var i -  
ab l e .  I n  equation (18), Q i s  assumed constant  (KE = 100). Note again 
t h a t  it i s  probably b e t t e r  t o  make 

The r e s u l t s  of t h e  equations (17) and (18) are p l o t t e d  i n  f ig-  
ures  l 7 ( a )  and 1 7 ( b ) .  
s ince  we des i re  t h e  system t o  be  l i nea r  i n  t h i s  region of e r r o r  o r  output 
rate. 

m(T1) = 0 i n  equation (18). 

The dot ted  portions of t h e  so lu t ions  are el iminated,  

I20 

40 

0 .4 .8 0 .8 
l e 1  I & I  

( a )  Nonlinear e r r o r  funct ion.  ( b )  Nonlinear output 
rate funct ion.  

Figure 17.- Nonlinear functions f o r  example cont ro l  system. 

func t ion  generator,  t h e  input-output curve of t h e  funct ion generator  can 
be obtained by p l o t t i n g  

If one desires t o  generate these nonl inear  funct ions by means of a 
P8 

E vs. % ( E ) €  o r  6 vs. Kt(6);. 

. 
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The results of simulation s tud ie s  have shown e i t h e r  one of t hese  
systems ( n o d i n e a r  e r r o r  funct ion o r  nonlinear output rate funct ion)  t o  
have desirable  ( i . e . ,  almost optimum) c h a r a c t e r i s t i c s  f o r  l a rge  inputs .  

For t h e  general  case one can give t h e  following s t eps  f o r  computing 
nonlinear funct ions:  

(1) Determine f o r  t he  given 
a c t u a l  and t h e  optimum first  r eve r sa l  t i m e s  as a funct ion of 
t h e  input  s i z e ,  Ro. 

G ( s )  o r  an approximate G ( s )  t he  

(2)  Determine t h e  switching equation f o r  t h e  input  t o  t h e  l i m i t e r  
i n  general  equation form. 
will be known as funct ions of t i m e .  

For l a r g e  inputs  a l l  t h e  q u a n t i t i e s  

( 3 )  For inputs  where the  a c t u a l  f i r s t  r eve r sa l  t i m e  i s  longer  than 
t h e  optimum t i m e ,  determine 
This w i l l  be read from curves i n  chapter  I11 f o r  complicated 
cases .  

Ro(T1) from t h e  optimum curve. 

( 4 )  Solve the  switching equation of s t e p  2 f o r  the des i red  non- 

Ro; 
l i n e a r  funct ion ( e .g . ,  K€(E)). 
t i o n  can be computed at the  switching time, T1, except 
Ro(T1) i s  determined according t o  s t e p  3.12 

All q u a n t i t i e s  i n  t h i s  equa- 

2.6.1 An optimum second-order system.- This sec t ion  shows t h a t  
using the switch time method f o r  an on-off seeone-order system r e s u l t s  
i n  t h e  same optimum system, t h a t  i s ,  t h e  same switching equation as t h e  
phase plane method. 
i n  t h e  next s ec t ion  should give the  user  some confidence i n  when t o  
expect good r e s u l t s  from t h i s  method. 

This r e s u l t  along with t h e  discussion on l imi t a t ions  

Consider t h e  on-off system of f igu re  15. The input ,  m ( t ) ,  t o  t h e  
i n f i n i t e  gain l i m i t e r  ( o r  i d e a l  r e l ay )  i s  given by equation (19). 

The output of t h e  l i m i t e r  i s  

x ( t )  = sgn m ( t )  

'*These funct ions which are derived are symmetrical with respect  t o  
the  or ig in .  
i s  symmetrical, t h a t  i s ,  i t s  maximum values ( p o s i t i v e  o r  negative) a re  
iden t i ca l .  Although t h e  switch time method could be extended t o  cover 
cases  where the  maximum values were not t h e  same,it has  not been done i n  
t h i s  inves t iga t ion .  

This symmetry i s  a r e s u l t  of t h e  assumption t h a t  t h e  l i m i t e r  
7 
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Since we are only concerned with t h e  sign of 
equation (19) t o  ob ta in  t h e  switching equation 

m ( t ) ,  we se t  m(T1) = 0 i n  

€(T1) = -a6(Tl)  (21) 

If we w a n t  t h e  optimum s t e p  response, c(T1) i s  given by equation (15) 
and Ro(T1) i s  taken as lRo(Tl ) l  = T12. Thus 

and from equation (16) with reference t o  figure 15 

<(T,) = - ; t ( ~ ~ )  = - T ~  sgn R, (23) 

Using equations (22) and (23) i n  equation (21) and solving f o r  a gives 

Since < i s  negative f o r  R, pos i t ive  and v ice  versa ,  equation (25) 
can he  simFlified- to 

Subs t i tu t ing  t h i s  r e s u l t  i n  equation (19) and recognizing it must be 
t rue f o r  a l l  times gives  t h e  optimum f i r s t  r eve r sa l  curve 

Equation (27) gives  t h e  optimum system which i s  t h e  exact r e s u l t  of 
previous work (see, e .g . ,  r e f .  10). 
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I Question number 1 can be answered i n  general  by t h e  following 
statement: "The method w i l l  always give good r e s u l t s  i f  t he re  i s  not 
more than one zero i n  t h e  expression G ( s )  H ( s )  D ( s )  and the  system has 
'adequate s t a b i l i t y '  l3 i n  t h e  l i n e a r  region."  
statement p laus ib le  w i l l  be made i n  two steps;  f i r s t ,  we s h a l l  inves t i -  
gate  the  r e s t r i c t i o n  of no zeros i n  t h e  expression G ( s )  H(s) D ( s )  and, 
second, the r e s t r i c t i o n  of only one zero.  

Arguments which make t h i s  

2.7 Limitat ions of t h e  Switch Time Method 

Section 2.6 demonstrated a method of computing funct ions of a s ing le  
var iab le  i n  order  t o  obta in  near  optimum response f o r  l a r g e  s t e p  inputs .  
It w a s  also demonstrated t h a t  t h e  method, when appl ied t o  one second- 
order  plant  ( G ( s )  = l / s2 ) ,  gives the  same optimum switching equation as 
has been derived by the  phase plane.  It can be shown t h a t  t he  method 
w i l l  a l so  give the  optimum switching curve f o r  a p l an t  t r a n s f e r  funct ion 
G ( s )  = K / ~ ( T s +  1) , t h a t  i s ,  f o r  a type 1 second-order p l a n t .  
remains t o  be considered are t h e  following questions:  

What 

(1) I n  what general  cases can one always expect good r e s u l t s ?  
This question could be rephrased a s ,  "When i s  a s ing le  non- 
l i n e a r  funct ion adequate t o  insure  good response t o  l a r g e  
s teps?  'I  

( 2 )  I n  what spec ia l  cases  can one use a func t ion  of a s ingle  
var iab le  and what a d d i t i o n d  technique i s  required t o  
determine simple funct ions of two var iab les  ( e .  g .  , 
G ( c ) ~ + K & ( 6 ) 6 )  which w i l l  give good s t ep  response t o  a 
broader c l a s s  of systems? 

The c h a r a c t e r i s t i c  equation of t h e  closed-loop transfer funct ion of  
f i gu re  l(a) i s  given by equation (28), where KL i s  t h e  gain of t h e  
l imiter .  

~ + K L G ( s )  H ( s )  D ( s )  = 0 (28) 

If the re  are  no zeros i n  t h e  expression 
one can rule  out type 2 o r  type 3 p l an t s ,  s ince  they could not have ade- 
quate s t a b i l i t y .  This can be v e r i f i e d  by sketching root  l o c i  f o r  any 
type 2 o r  type 3 p l an t s  under t h e  r e s t r i c t i o n  of no zeros i n  

A G ( s )  H ( s )  D ( s ) .  
type l plant must of necess i ty  be "dominant" f i r s t  order  f o r  l a rge  inputs  

G (  s) H(s) D( s )  , then immediately 

14 Thus, only type 1 p lan t s  need t o  be  considered. 

131f a l l  poles  of t h e  l i n e a r  closed-loop t r a n s f e r  funct ion have a 
damping r a t i o  g rea t e r  than 0 . 5 ,  t h e  system i s  def ined as adequately 
s t a b l e .  The number, 0 . 5 ,  i s  r e l a t i v e l y  a r b i t r a r y  and probably b e s t  
determined by t h e  experience of t h e  cont ro l  designer .  

"Type 0 p lan t s  are not Considered i n  t h i s  i nves t iga t ion .  



(see rule I, sec t ion  2 .2 ) .  
s t a b i l i t y  f o r  t h e  l i n e a r  region and no zeros i n  
r u l e  out condi t iona l ly  s t a b l e  systems. 
t o  be impossible f o r  t h e  damping of any complex poles  t o  decrease appre- 
c i ab ly  as t h e  l i m i t e r  gain i s  decreased without t h e  system becoming 
dominant f irst  order .  

The addi t iona l  r e s t r i c t i o n s  of  adequate 
G ( s )  H ( s )  D ( s )  a l s o  

A s  a matter of f a c t ,  it appears 

l o c i  here  are f o r  a f i f t h -o rde r  system; how- 
ever ,  t h e  l o c i  i n  t h e  v i c i n i t y  of the o r i g i n  
( t h e  dominant mode) w i l l  be approximately the  
same regard less  of t he  order .  From f igu re  18 
it can be seen t h a t  t h e  response will become 
less  damped as t h e  magnitude of t he  input i s  7 , 2  

A second argument i s  t h a t  i f  G ( s )  D ( s )  H ( s )  contains  no zeros,  we 
might as w e l l  l e t  H ( s )  = 1 and D ( s )  = K1, t h e  gain constant .  With 
reference t o  f igu re  l ( a )  it can be seen t h a t  t h e  
quant i ty ,  i s  only a funct ion of t h e  e r ror .  
of t he  s ign  of x required t o  obtain s a t i s f a c t o r y  response f o r  s t e p  
inputs  i n  t h e  l i n e a r  region. 
fo rce  i n  t h e  l i n e a r  region. 
t i o n  2 . 2 )  , sa tu ra t ion  e s s e n t i a l l y  "Slows down t h e  motion" which reduces 
t h e  necess i ty  of braking even more i n  t h e  sa tu ra t ed  region than i n  the  
l i n e a r  region.  Thus, it i s  d i f f i c u l t  t o  reason why any r eve r sa l  of t h e  
s ign  of x should be required i n  the sa tu ra t ed  region.  

x, t he  sa tu ra t ing  
Thus, t he re  i s  no r eve r sa l  

This system, the re fo re ,  requi res  no braking 
Since it i s  ve loc i ty  l imi t ed  (see sec- 

The root-locus argument appears t o  be t h e  b e s t ,  and t he  reader 
should sketch the  root  l o c i  f o r  a fev 3sl.sstc t o  s a t i i ' y  ?i.ii;iselF of the  
p l a u s i b i l i t y  of Lhe a r g m e a t .  One c m  concliide t h a t  under t h e  r e s t r i c -  

s t a b i l i t y  f o r  l a r g e  inputs .  
I~ V L V l r  i A i l  o r  110 zeros , no ;ionliiiehr f - j z c t l z r  ::ill :?:- -req~-lii-er! f c r  adpqi-late 

- 



f a c t  t he  method described i n  sec t ion  2.6 does j u s t  t h i s  i f  we choose 
t o  be a nonlinear funct ion of E .  For a simple zero, t h e  switching equa- 
t i o n ,  tha t  i s ,  t h e  equation determining the  s ign of 
wr i t ten ,  f o r  s t e p  inputs ,  as K , ~ ( t ) + K ; c ( t ) .  If K, decreases with 
~ ( t )  , t h i s  causes t h e  zero of t h e  incremental model of t h e  system t o  
s h i f t  toward t h e  o r ig in .  The method, i f  c a r r i e d  through f o r  any type 2 
p l a n t ,  will show t h a t  K, must be a decreasing func t ion  of E i f  t h e  
f i r s t  reversa l  time i s  t o  be maintained optimum. 

K, 

x ( f i g .  l) ,  can be 

Question 2 i s  now considered. It cannot be answered prec ise ly ,  
although root-locus arguments give t h e  following answer: "A funct ion 
of  a s ingle  var iab le  i s  s u f f i c i e n t  i n  those examples where a change i n  
a s ing le  var iab le  can s h i f t  t h e  zeros,  as a funct ion of l i m i t e r  gain,  
i n  such a manner t h a t  all poles  s t ay  i n  a well-damped region of t he  s 
plane as the  l i m i t e r  gain i s  decreased." The problem with t h i s  state- 
ment i s ,  of course, t h a t  one cannot adequately define t h e  equivalent 
gain of the l i m i t e r .  
s eve ra l  examples i n  chapter I V  show t h a t  only t h e  e r r o r  gain need be 
made a nonlinear funct ion of t h e  e r r o r  i f  s t e p  inputs  are considered. 
Thus, it s h a l l  be assumed t h a t  making t h e  zero pos i t i ons  change with 
e r r o r  i s  equivalent ( f o r  s t e p  inputs )  t o  making t h e  zeros change as a 
func t ion  of t h e  equivalent l i m i t e r  gain.  

A t  least  t w o  previous examples ( r e f .  5 )  and 

To i l l u s t r a t e  general ly  how one can get  a t  l eas t  an approximate 
idea  of whether a s ing le  funct ion of e r r o r  i s  s u f f i c i e n t ,  consider t h e  
following type 1 third-order  system with 
zeros.  The root  l o c i  f o r  t h e  l i n e a r  design i s  sketched i n  figdre 19. 
The points  A represent  t h e  pole posi-  

G ( s )  H(s) D ( s )  having two 

l i m i t e r  gain of t he  system. It i s  
seen t h a t  t h i s  system i s  not dominant 
f i r s t  order, unless  t h e  equivalent 
gain of the l i m i t e r  i s  considerably 
l e s s  than t h a t  corresponding t o  the  
poin ts  A ( l e t t i n g  t h e  real  pole move 
c lose  t o  the o r i g i n ) .  
could w e l l  expect t h a t  t h e  t r a n s i e n t  
response w i l l  change qu i t e  markedly 
with t h e  s ize  of t h e  s t e p  input ,  
becoming increasingly bad f o r  a cer- 
t a i n  range o f  inputs .  This r e s u l t  i s  
hypothesized, s ince  t h e  damping at 
poin t  A of t he  complex poles  i s  very 
low. 

Thus, one 

t i o n s  f o r  one open loop, o r  equivalent 

Figure 19.- Root l o c i  of a 
type 1 system. . 
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A block diagram f o r  t h i s  system can be as shown i n  f igu re  20.15 

Figure 20.- Block diagram of a type 1 system. 

The zero pos i t ions  are given by equation (29). 

From equation (29) it caz be seen +.-.hat deci-esslng I,:, a l n n e  clauses 
the  zeros of f igu re  i y  t o  move ii? a d i r c c t i m  nf constant r e a l  pa r t  and 

t o  be he lp fu l .  S imi la r ly  decreasing a1 would cause t h e  r e a l  p a r t s  LO 
decrease while t h e  imaginary p a r t  increases.  This does not appear t o  be 
des i rab le .  Increasing a2 causes both r e a l  and imaginary p a r t s  t o  
change, and it i s  necessary t o  invest igate  t h e  l o c i  as a2 changes t o  
see whether b e n e f i c i a l  results shouldbe  expected. The v a r i a t i o n  of a. 
with E(t) i s  t h e  simplest  from a construction s tandpoint ,  and a design 
based. on a nonl inear  funct ion of E should be inves t iga ted  f irst  by 
designing the  nonl inear i ty  and thcn by :?ems ni' sim.lat , ton.  If simuls- 
t i o n  s tud ie s  show t h a t  ne i the r  var ia t ions of a2 with e r r o r  nor a. 
with e r r o r  give s a t i s f a c t o r y  r e s u l t s ,  then one must change two of t h e  
a ' s  of f i gu re  20 with e r r o r  so t h a t  the l o c i  of zero pos i t ions  move along 
a path which keeps the  closed-loop poles i n  a well-damped region of t he  
s plane.  Such a path might be one which keeps the  damping r a t i o  o f  t he  
zeros constant .  

decreasjiiig Tl?;agins-py pal-?. , ' j n i s  , f'pag: , : , , : 3 : : ~  ~ e z . e q c i  fir. sJoii1-d anpear . I ., 

I n  summarizing t h i s  sec t ion  on l imi t a t ions  one can state t h a t  t h e  
method, when used i n  conjunction w i t h  root  locus and simulation, appears, 
at l e a s t  f o r  s t e p  inputs ,  t o  be primarily l i m i t e d  by the  ingenuity of 
t h e  designer.  I ts  t r u e  drawbacks are t h a t  for successful  r e s u l t s  i n  
a r b i t r a r y  order  cases a l a rge  number of t r i a l  designs may have t o  be 
simulated before  a sa t i s f ac to ry  design can be obtained. 

>I-= 

'-'For s t e p  inputs?  oatput r a t e  amd Output acce lera t ion  feedbacks 
f o r  t h i s  system give i d e n t i c a l  results as zeros i n  the  e r r o r  channel. 
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2.8 Analysis and Design Methods f o r  Sampled-Data Systems 

The ma te r i a l  presented thus  far can almost be  used f o r  sampled-data 
systems with t h e  s ing le  s u b s t i t u t i o n  of t h e  z plane wherever t h e  s 
plane has been used. There are, however, c e r t a i n  modifications necessary.  
It i s  believed t h a t  these  modifications are b e s t  described by tak ing  up 
t h e  subjects presented i n  t h i s  chapter f o r  continuous systems and showing 
t h e  modifications which a r e  required f o r  t h e i r  app l i ca t ion  t o  sampled- 
da ta  systems. 

2.8.1 Root locus.-  The rules  presented f o r  continuous systems can 
be used f o r  sampled-data systems with t h e  following modifications:  

(1) The s t a b i l i t y  boundary i n  t h e  

(2 )  A l l  poles  of t h e  p l an t  should be i n  t h e  p r i n c i p a l  s t r ip16  of 

z plane i s  t h e  u n i t  c i r c l e .  

sT t he  s plane f o r  t h e  transformation z = e . 
(3)  The poles  of t h e  d i g i t a l  computer pulse  t r a n s f e r  func t ion  are 

w e l l  damped. Point 3 i s  introduced here f o r  reasons i d e n t i c a l  
t o  those which are discussed i n  sec t ion  2.2 ( footnote  1); t h a t  
i s ,  t h e  poles  must be well  damped t o  prevent t h e  output o r  t h e  
l i m i t e r  from being switched €rom one extreme t o  another when 
the  loop i s  e s s e n t i a l l y  "opened up" by l i m i t e r  ac t ion .  

( 4 )  Since 

mapping i n  t h e  v i c i n i t y  of t he  o r i g i n  (sT << 1) i n  t h e  
plane transforms i n t o  mapping i n  the  z plane around z = 1. 

s 

2.8.2 Switch t i m e  method, analysis . -  The technique t o  be appl ied 
here  i s  almost i d e n t i c a l  t o  t h a t  f o r  t he  continuous system. I n  order  t o  
give t h e  reader some confidence i n  t h e  technique as w e l l  as t o  introduce 
t h e  small differences i n  approach, an example w i l l  be worked out i n  
d e t a i l .  The p r inc ipa l  difference i n  approach i s  simply t h a t  we are now 
deal ing with a sampled-data system; thus ,  t h e  output of t h e  d i g i t a l  
computer can change only at d i s c r e t e  t i m e s .  

16 Principal  s t r i p  means t h a t  t he  imaginary p a r t  of any complex 
poles  should be l e s s  than one ha l f  t h e  sampling frequency, t h a t  i s ,  
U n m  < x/T. 
seem up t o  now not t o  be well  understood. It i s  imposed so  t h a t  t he re  
i s  a one t o  one correspondence between pos i t i ons  of po les  i n  t h e  s 
plane and posi t ions of poles  i n  the  z plane.  

The implicat ions of or necess i ty  f o r  t h i s  r e s t r i c t i o n  
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Figure 21.- Block diagram of an example sampled-data system. 

L e t  us assume t h a t  T = 1 and tha t  a " f i n i t e  s e t t l i n g  time" design 17 
i s  des i r ed  f o r  t h e  l i n e a r  region. 
c h a r a c t e r i s t i c  equation of t h e  closed-loop pulse  t r a n s f e r  funct ion i n  
6 ~ l l c l  ,-̂  - ,. - cri 0 1 terms of t h e  ava i lab le  parameters; t h e  c h a r a c t e r i s t i c  equation 
i n  terms of a and K, i s  

To obtain such a design one writes t h e  

\ 

* 1-e-s~ m(t) ,  ~ t ) ,  

( [ a +  ( 1 / 2 ) 1 z - l -  [ a -  ( ~ / P ) ] z - * \  

J - @  l + K e I  
(1- 7-1)2  

(The symbol Z [ F ( s ) ]  reads the  Z transform of F(s). The Z transform 
of a func t ion  can be obtained by expanding t h e  Laplace transform i n  par- 
t i a l  f r a c t i o n  expansions and looking up ind iv idua l  terms i n  t a b l e s  
( r e f .  6 )  .> 
a f i n i t e  s e t t l i n g  t i m e  design. 
z i s  

The roots  of equation (31) must all occur at z = 0 t o  give 
Thus, t he  r e su l t an t  equation i n  terms of 

- I c(t) 

Y 

L 

- 

A f i n i t e  s e t t l i n g  time design can always be obtained using output 17 

feedback der iva t ives  provided t h a t  a s u f f i c i e n t  number (o rde r  of t h e  
system minus one) are used and a zero-order hold e x i s t s  i n  the  system. 
It can l ikewise be obtained using a D ( z )  ( f i g .  l(b)) with H ( s )  = 1. 
The 
l i g h t l y  damped pole .  
l i g h t l y  damped pole cannot be t r ea t ed  by the  methods used here .  

D ( z )  pulse  t r a n s f e r  funct ion f o r  t h i s  example, however, has a very 
This type exaiqlc, t h a t  i s ,  where D( z) has a 

OS+l 
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Since we only allow z = 0 then 

o r  

O f  i n t e r e s t  also i s  the pulse  t r a n s f e r  funct ion C(z)/R(z) 

(33) 

(35) 

The u n i t  pulse  response given by equation (35) shows the  output t o  
be zero a t  the  end of t h e  t h i r d  sampling i n s t a n t  which simply proves a 
f i n i t e  s e t t l i n g  time design has been achieved. 
present  ( f o r  small s t e p  inputs )  t he  output w i l l  be a t  t h e  desired value 
of t h e  s tep input  i n  two sampling i n s t a n t s .  
C ( z )  fo r  a s t e p  input 

Without s a tu ra t ion  being 

This can be seen by wr i t ing  
R(z) and expanding t h e  r e s u l t  i n  a power s e r i e s  

of z-n* 

It i s  a l s o  des i rab le  t o  consider t h e  output of t h e  l i m i t e r ,  x ( t )  , 
f o r  a step input Rou(t)  

For 
magnitude 

r ( t )  = Rou(t) then R(  z) = R o / l -  z - l ;  thus  f o r  a s t e p  of Ro 

X ( q j r  -12r . 

x( Z )  = R o ( l  - z - ~ )  (37)  

A s  one can recognize from equa- 
t i o n  (37), f o r  a s t e p  input ,  Ro, x ( t )  
has a wave form as shown i n  f igu re  22. 
Since x = ?, t h i s  motion agrees with 
what we know about con t ro l l i ng  second- 
order  plants  with l imi t ed  accelerat ion;  

Figure 22 .- Plant  input ,  x ( t )  , 
f o r  a s t e p  input ,  % u ( t ) .  
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namely, t h a t  t o  move from one point  t o  another one appl ies  acce lera t ion  
ha l f  t he  time and decelerat ion the  other h a l f .  
i f  Ro i s  g rea t e r  than one u n i t ,  sa tura t ion  must take  place,  and then a 
g rea t e r  number of sampling i n s t a n t s  will be required i n  order  t h a t  t h e  
e r r o r  be reduced t o  zero. This i s  the p r i n c i p a l  d i f fe rence  i n  the  way we 
s h a l l  t r e a t  sampled-data systems over continuous systems, t h a t  i s ,  t he  
f i r s t  reversa l  t i m e  can only vary i n  d iscre te  increments of T seconds 
(1 second f o r  t h i s  example). 

It can be recognized t h a t  

The curve f o r  the  f irst  reversa l  time as a funct ion of t h e  input 
will now be derived. For inputs  smaller than 1 u n i t  it will be 1 second. 
For inputs  g rea t e r  than 1 u n i t  sa tura t ion  takes  place,  e f f e c t i v e l y  "open- 
ing the  loop" and allowing one t o  write t h e  equation f o r  M(z) i n  a power 
s e r i e s  expression i n  
Ke = 1, a = 3/2, and 

terms of 2-l. With reference t o  f igu re  21 l e t t i n g  
x ( t )  = u ( t )  gives 

= (nT)2 1 .5nT] z-n 

n=o 

Equation (38) i s  wr i t ten  i n  i n f i n i t e  s e r i e s  form t o  allow one t o  pick 
out t h e  sampling in s t an t  and the  size of t h e  s t e p  input when 
reverses  from +1 t o  -1. For this e x ~ q l e  '2 is !:ni i , ? ;  so I t  i s  q u i t e  
easy t o  derive a curve of T1 versus Ro from equation (38) .  For 
example, f o r  n = 2 we have t h e  equation 

x ( t )  

-1 - >Ro- 2 - 3  o r  Ro - < 4 (39) 

S imi la r ly  f o r  n = 3 

There i s  a range of inputs  a t  a given value of n i n  which m(nT) i s  
l a r g e r  than -1 but  l e s s  than +l. This range will be dot ted  on the  switch 
time curve. Thus, f o r  a f i r s t  reversal  t i m e  of n = 3 one obtains  t h e  
range of R, as 6 < Ro < 8, with a do t ted  l i n e  connecting t h e  po in t s  
T 1  = 2, Ro = 4 and T I  = 3, Ro = 6. 
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The f i r s t  reversa l  t i m e  of t h i s  system i s  shown with t h e  optimum 
( f o r  a continuous system, eq. (4)) i n  f igu re  23. 

c 

.- E 
t 

0 

Q) 
> 
2 4  

0 IO 20 30 40 50 
Input  step magnitude, R, 

Figure 23.- Actual and optimum f i r s t  r eve r sa l  times f o r  example system. 

Now the same hypothesis i s  t r u e  f o r  sampled-data systems as w a s  t r u e  
f o r  continuous systems, t h a t  i s ,  i f  t h e  f irst  r eve r sa l  t i m e ,  TI, i s  
g rea t e r  than the  optimum, then overshoot must e x i s t  i f  t h e  bounded var i -  
ab l e  i s  saturated ( see  sec t ion  2.4). With reference t o  figure 22 it can 
be seen for  Ro l e s s  than uni ty ,  t h e  sampled-data system i s  l i n e a r ,  and, 
therefore ,  t h e  f i r s t  r eve r sa l  t i m e  can be longer  than t h e  optimum f o r  t he  
range of inputs 0 < Ro <1. For inputs  g rea t e r  than uni ty ,  reference t o  
f i gu re  23 shows t h a t  se r ious  overshoot should not be expected f o r  inputs  
less  than approximately 5 .  This hypothesis i s  confirmed by the  s t ep  
responses f o r  t h i s  system presented i n  f igu re  24. 

80 

3 40 
Q 
c 
3 
0 

0 IO 20 30 40 50 
Time, sec 

FiL-re 2b.-  Step responses of example system. 

? 
w 
P 
0 

. 
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By comparing f igu res  24 and 23 one can see t h a t  t h e  switch time 
curves can be used f o r  sampled-data systems as well  as f o r  continuous 
systems. For example, f o r  an input  of 10 u n i t s  t h e  f i r s t  r eve r sa l  curve 
shows t h a t  t h e  output should overshoot t o  16 u n i t s .  I n  o the r  words, t h e  
a c t u a l  r eve r sa l  t i m e  f o r  an input of 10 u n i t s  i s  equal t o  the  optimum 
reve r sa l  time f o r  an input of 16 un i t s .  
t he  absc issa  of t h e  optimum curve for  t h e  ordinate  corresponding t o  an 
input of 10 u n i t s  for t he  ac tua l  curve. The simulator r e s u l t s  show t h e  
overshoot t o  be very close t o  16 un i t s  for t h i s  input .  
overshoot of t h e  response ge t s  l a rge r  as the  s i z e  of t h e  input i s  
increased as t h e  switch t i m e  analysis  method demonstrates. 

To obta in  t h i s  number, one reads 

Likewise, t he  

2.8.3 Calculation of response t i m e s . -  The method f o r  ca lcu la t ion  
of t h e  response times follows t h a t  previously described f o r  continuous 
systems. 
make t h e  ca lcu la ted  r e s u l t s  less accurate than f o r  t he  continuous case.  
Two examples a re  shown i n  chapter I V  t o  allow t he  reader  t o  obta in  an 
idea  of t h e  accuracy of t h i s  method. 

Due t o  the  f a c t  t h a t  t h e  sys t em i s  sampled, t h e  approximations 

2.8.4 Calculation of nonlinear funct ions.-  Figure 23 showed t h a t  
The simulator r e s u l t s  of f i gu re  24 t h e  example system must overshoot. 

&xonstr&e t h i s  overshoot and the  poor response of t h e  system f c r  la rge  
siep iiiPiitS. 
nonl inear  funct ions.  We s h a l l  now invest igate  how t h i s  can be accom- 
p l i shed .  
t h a t  r eve r sa l  of t he  sa tura ted  variable can take place only a t  d i sc re t e  
increments of time. 
t o  the  optimum first  reversa l  curve. This approximation i s  shown i n  
f igu re  
0 a 
v) 

It i s  t h u s  asslATLed tiia.t t:iiyF shoul& d e s i ~ ~ n  ec?pqeris;lfin";, - 

The method i s  i d e n t i c a l  t o  t h a t  described i n  sec t ion  2.6 except 

This cons t ra in t  forces  one t o  take  an approximation 

'8 k 
L 

a 
E 

0 

a > 
2 4  

0 
Input step magnitude, R, 

Figure 25 .- Approximation t o  optimum f i r s t  reversa l  
curve f o r  exmple system. 
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could design f o r  overshoot o r  undershoot by s h i f t i n g  t h e  s t a i r c a s e  shaped 
curve upward o r  downward, respec t ive ly .  
allows both a small amount of overshoot as w e l l  as undershoot, d i s t r i b u t e d  
i n  a manner which should give near optimum response f o r  t h e  sampled-data 
system. 

The approximation taken here  

I f  one assumes the  approximation shown i n  f igu re  25 i s  s a t i s f a c t o r y ,  
then the  problem i s  t o  determine a nonl inear  funct ion which w i l l  give 
t h i s  f i r s t  r eve r sa l  curve. F i r s t  one wr i tes  t h e  equation f o r  t h e  input 
t o  t h e  l i m i t e r  f o r  s t e p  inputs  l a r g e  enough t o  cause sa tu ra t ion .  For 
t h i s  example t h e  Z transform equation i s  (with reference t o  f i g .  21) 

I n  t h i s  equation every quant i ty  i s  known up t o  t h e  f irst  r eve r sa l  t ime. 
For example, c(nT) = (nT)'/2! ; c(nT) = nT ; Ro(nT) i s  obtained from f ig -  
ure  25 (Ro i s  t h e  m a x i m u m  value obtained f o r  any sampling t i m e ) ;  and 
m(nT) = -1. Thus, we must generate a nonl inear  funct ion so t h a t  t h i s  
equation i s  s a t i s f i e d  f o r  a l l  values 
of nT. For the  example here it w i l l  
be assumed. t h a t  t h e  nonlinear func- 
t i o n  Kh(6) i s  des i red .  Thus, assume 
t h a t  Ke = 1 and a = 3/2 ( i n  t h e  
l i n e a r  region) ,  rewr i te  equation ( k 1 )  
and solve f o r  

60 

ac(nT) t o  obta in  

40 

f (C) ac(nT) = Ro - - (nT)2  + 1 = f [ ; l ( t ) ]  
2! 

(42) 

20 
One point  on t h e  curve of 
i s  f o r  n = 3 and Ro = 11.5. These 
values subs t i tu ted  i n  equation (42) 
give f [ 6 ( t ) ]  = 8 f o r  6 ( t )  = 3.  The 
des i red  curve obtained by tak ing  a l l  
values of n i n  t h e  range of 
i n t e r e s t  i s  shown i n  f igu re  26. 

f [ h ( t ) ]  

0 4 8 
Output  velocity, C This i s  half of a symmetrical curve 

with respect t o  t h e  o r i g i n  f o r  
reasons mentioned i n  footnote  12, 
chapter 11. Figure 26.- Nonlinear €unction l o r  

example system. 

. 
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The bene f i t s  gained by introducing the  designed nonl inear i ty  i n t o  
the  system can be observed by comparing t h e  previous r e s u l t s  f o r  a 
l i n e a r  c o n t r o l l e r  sbown i n  f igu re  24 with t h e  s t e p  responses shown i n  
f igu re  27 which a r e  f o r  t h e  nonlinear con t ro l l e r .  

'3 40 
a 
3 
t 

0 

2.83 Discussion.- The example worked out i n  t h i s  s ec t ion  shows 
t h a t  t h e  switch time method gives good r e s u l t s  when appl ied t o  sampled- 
da ta  systems. There a re ,  of course, more approximations involved than 
i n  t h e  continuous case.  

The l imi t a t ions  of t h e  method appear t o  be t h e  same as i n  t h e  case 
of continuous systems. In  t h i s  case a l so  one can probably combine root- 
locus techniques i n  the  z plane wi th  t h e  switch time method t o  give 
reasonably powerful t o o l s  f o r  the  treatment of systems oi' m y  order .  

The b e s t  success w i l l  probably be a t t a i n e d  when the  sampling 
frequency i s  high compared t o  the  dominant modes of t h e  continuous 
system from which the  sampled-data system i s  derived ( see  r e f .  8 ) .  
i s  then t r e a t i n g  an almost continuous system, and, consequently, methods 
based on continuous system design pract ices  will give very near ly  t h e  
same r e s u l t s  as t h e i r  continuous system counterpar t .  

One . 
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111. DERIVATION OF THlI OPTIMUM RESPONSE 

3 .1  Introduction 

The previous chapter demonstrated that the switch time method is 
quite useful for the analysis of linear controllers which control a 
plant whose input is limited. 
a synthesis technique for determining nonlinear controllers which pro- 
vide near optimum response when large step inputs are applied to the 
feedback control system. 
and synthesis methods requires so-called optimum curves which give the 
first reversal time of the saturated quantity and the minimum response 
time of the system as a function of the input step magnitude. It is the 
purpose of this chapter to derive these optimum curves for the plants 
given in table I in normalized form so they may be used for any saturated 
control system, provided the "linear" design meets the restrictions 
imposed in chapter 11. 

The method also has been shown to provide 

The application of both the proposed analysis 

In order to derive the optimum response curves, it is convenient to 
use the concept of an entire functi0n.l 
lowing section and then succeeding sections are devoted to using it to 
derive the optimum response curves. 

A theorem is given in the fol- 

3.2 A Theorem on the Laplace Transform of a 
Truncated Time Signal 

Theorem: If a Laplace transformable function of time, f(t), is 
truncated (i.e., fT(t) = o for a > t > b where fT(t) is the truncated 
time signal), then the Laplace transform of 
function. 

fT(t), L[fT(t)] is an entire 

Proof: A complete proof of this theorem is available by applying 
theorems 95-98 of Titchmarsh (ref. 14). 
entire function that will be needed here is that it has no poles; that 
is, FT(s) is bounded in the finite portion of the s plane. We shall 
prove this one characteristic about 
and will give the reader confidence in the application made later. 

The only characteristic of the 

FT(s) because the proof is short 

. 
'An entire function is regular in the entire finite s plane (see 

ref. 13, for example). 
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5 

The l i m i t s  on the  i n t e g r a l  may be changed s ince  
It is assumed that a and b are both pos i t ive  numbers. One now expands 
t h e  exponential  i n  an i n f i n i t e  series giving 

f T ( t )  = 0 for a > t > b. 

03 

( 44) F T b )  = 1 7 (4 L b f T ( t ) t n d t  

n =o 
Assume t h a t  f T ( t )  5 M where M i s  some f i n i t e  number. Then, 

By multiplying 
one obtains  

The right-hand 
giving 

in s ide  the  summation sign by -s and outs ide by l/-s, 

Since t h e  funct ion of s given in  equation (47) is  f i n i t e  i n  t h e  f i n i t e  
port ion of  t h e  s plane, FT(s) is bounded. 

3.3 A Method f o r  Deriving t h e  Optimum Response 

The theorem of sec t ion  3.2 can be used t o  advantage i n  der iv ing  t h e  
optimum response i f  f u r t h e r  information regarding t h e  shape of 
t h e  bounded var iab le ,  i s  a t t a inab le .  Consider f i g u r e  1 f o r  r ( t )  = Rou(t)  
and zero i n i t i a l  conditions.  Then 

x ( t ) ,  

(48) RO L [ E ( t ) ]  = E ( s )  = - - X ( S )  G ( s )  
S 

A necessary but  not a suf f ic ien t  condition i f  we a r e  t o  a t t a i n  t h e  
optimum i s  t h a t  E ( s )  must be an en t i r e  funct ion because E ( t )  = 0 
for t < 0 and we d e s i r e  E ( t )  = 0 for t > Tm. I n  o ther  words, t h e  
des i red  € ( t i  i s  a truncated time signal.  I n  order t o  meet t h e  



42 
> 

sufficiency condition one must know t h e  optimum shape of 
general  terms of unknown r e v e r s a l  times. One then der ives  X(s) and 
determines the  r e l a t ionsh ip  between these  unknown reve r sa l  times and 
by forcing equation (48) t o  be an e n t i r e  funct ion.  

x ( t )  i n  

Ro 

The general  shape of x ( t )  f o r  t h e  minimum response t i m e  can be 
found by e i t h e r  (1) inspect ion,  o r  (2) by use of a theorem proved by 
Bellman, Glicksberg, and Gross ( r e f .  4) f o r  t he  conditions for which it 
appl ies .  
have a minimum response t i m e  t o  rn input s t e p  
maximum value plus o r  minus throughout the  response, t h e  maximum number 
of reversals  being equal  t o  n-1 where n 
The proof, however, i s  only f o r  G ( s )  having r e a l ,  d i s t i n c t ,  and nega- 
t i v e  r o o t s .  It  i s  shown l a t e r  t h a t  i f  one confines h i s  i n t e r e s t  t o  
p l an t s  having only poles i n  t h e  l e f t  ha l f  plane or a t  s = 0 and i s  
in te res ted  only i n  responses t o  s t e p  inputs ,  t he  theorem gives a s u f f i -  
c i e n t  number of reversa ls  of 
der iva t ives  t o  zero i n  a f i n i t e  time, t h a t  i s ,  t o  allow 
equation (48) t o  be an e n t i r e  funct ion.  
response time obtained by using t h i s  number of r eve r sa l s  may not be the  
minimum f o r  p lan ts  with l i g h t l y  damped complex poles.  
shown here t h a t  if  zeros e x i s t  i n  G ( s )  then one does not  want t he  bounded 
var iab le ,  x ( t ) ,  t o  be a t  i t s  maximum throughout t he  e n t i r e  response, t h a t  
is, u n t i l  t h e  t i m e  when a l l  the  s t a t e s  of  t he  system a r e  res tored  t o  zero 
o r  a constant. 

The theorem appl ied t o  t h i s  problem s t a t e s  t h a t  i n  order t o  
x ( t )  should be a t  i t s  

i s  the  order of t h e  system. 

x ( t )  i n  order t o  r e s to re  t h e  e r r o r  and i t s  
E ( s )  given by 

A s  w i l l  be demonstrated, t h e  

It w i l l  a l s o  be 

The s t eps  involved i n  obtaining t h e  optimum responses a r e  summarized 
below. 

(1) Determine x ( t )  i n  terms of t h e  unknown switch times f o r  
This funct ion w i l l  be t h e  l i m i t  l e v e l  t i m e s  t h e  optimum response. 

a sum of delayed s t eps  f o r  G ( s )  having only poles.  
t imes w i l l  be wr i t ten  as undetermined coe f f i c i en t s .  

The delay 

( 2 )  Determine X(s) from x(t) . 
(3) Use the  f a c t  t h a t  t h e  e r r o r  transform must be an e n t i r e  

function t o  obtain a lgebra ic  o r  t ranscendental  equations r e l a t i n g  
Ro and the  unknowns of  x ( t )  . 

(4) Solve the  equations of s t e p  (3) t o  obtain t h e  optimum 
first  reversa l  t i m e  and the  minimum response t i m e  as funct ions of 
t h e  input s tep  magnitude Ro. 



3.4 A Type 1 First-Order P lan t  

For t h i s  example, G ( s )  = K / s .  
Considering f igu re  1, we see t h a t  
x = c/K. Thus, i n  order f o r  c t o  
move from zero t o  Ro, i n  t h e  minimum 
time, one simply uses the  m a x i m u m  
value o f  
maximum value o f  t he  output veloci ty ,  
b ( t ) ,  u n t i l  c = R, and then Figure 28.- Optimum motion of t h e  
r e s to re s  x t o  zero. The motion input,  x ( t ) ,  f o r  a type 1 
of x i s  shown i n  f igu re  28. This f i r s t - o r d e r  p l an t .  
example i s  s o  simple t h a t  t h e  answer 
r e l a t i n g  Tm and Ro 
w e  w i l l  go through t h e  s t eps  of section 3.3 t o  f ami l i a r i ze  the  reader  
with the  technique. 

t- Tm x ( t ) ,  which provides the  

can be wr i t ten  by inspect ion of f igu re  28; however, 

The s t eps  are as follows: 

x ( t )  = B[U(t) - U(t-Tm)] (49) 

Since E ( s )  must be an e n t i r e  function, then 

= some f i n i t e  number 
s =o 

thus 

Di f f e ren t i a t ing  the  numerator and the denominator with respect  t o  
gives 

s 
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Ro-BK ( Tme -sTm) 

2s  

Differentiating additional times 
provides no more information. In 
order that equation (52) be entire 
then, the numerator of equation (53) 
must be equal to zero o r  

Equation (54) can readily be solved 
for Tm and the curve showing 
Ro/KE3 vs. Tm can be plotted. This 
result is given in figure 29. For 
this simple example Tm is both the 
minimum response time and optimum 
first reversal time, TI. 

(53) 

Figure 29.- Minimum response 
time for a type 1 first- 
order plant. 

3.5 A Type 1 Second-Order Plant 

For this example, G ( s )  = K ( T ~ s + ~ ) / s ( T ~ s + ~ )  and we have allowed 
a zero to exist in the plant transfer function. 
mine the optimum motion of x(t) in order to reduce E(t) to zero in a 
minimum time. 
by expanding 
block diagram in teras of the components as shown in figure 30. 

The problem is to deter- 

The solution to this problem can be found most conveniently 
G ( s )  by the partial fraction expansion and constructing a 

. .  

I E P  
r 

Figure 30.- Block diagram of a type 1 second-order plant. 



It should be obvious from inspection of f igu re  30, t h a t  i f  
and yl(0) = y2(0) = 0, then 
( T ~  < T ~ )  c ( t )  i n  reaching Ro i n  the minimum t i m e .  Regardless of  
whether y2 ( t )  a i d s  or hinders,  any pos i t ive  value of T~ w i l l  allow 
c ( t )  t o  reach Ro i n  a shor te r  time than i f  T~ = 0. Thus, a zero ( i n  
t h e  l e f t  half  plane) can speed up the  response i f  one can f ind  a motion 
of x ( t )  which w i l l  a l l o w  c ( t )  t o  remain a t  Ro while y l ( t )  and y 2 ( t )  
change. This motion of x ( t )  can most conveniently be determined by 
solving f o r  t h e  
there .  

x = +B 
y 2 ( t )  e i the r  a ids  (-rl > T ~ )  or hinders 

x ( t )  which causes c ( t )  t o  jump t o  a constant and remain 

o r  

and 

For c ( t )  t o  jump t o  a constant value, C o ,  then 

( 5 5 )  CO X(S) G ( s )  = - 
S 

The 6 funct ion simply puts  an i n i t i a l  condition on y l ( t )  and y 2 ( t )  o f  
f i gu re  30 and from then on, y l ( t )  and y 2 ( t )  vary as 
The motions are shown i n  f igu re  31. 

c ( t )  remains constant.  

Time Time Ti me Ti me 
Figure 31.- Time h i s to r i e s  f o r  example system. 

If x ( t )  is  bounded, 6 functions cannot be permitted. However, 
x ( t )  i s  applied, y l ( t )  and y 2 ( t )  w i l l  a r r i v e  i f  t h e  maximum value of 

a t  values i n  a f i n i t e  t i m e  which w i l l  give 
If 
y l ( t )  and y 2 ( t )  can change while c ( t )  remains a t  R,. The optimum 
motion of x ( t )  w i l l  change as t h e  r a t i o  of -r2/-r1 changes as w e l l  as 
when t h e  s i z e  of t h e  input changes. A l i t t l e  physical  reasoning, how- 
ever, should make it c l e a r  t h a t  x ( t )  can only be one of the  two forms 
shown i n  f igure  32. 
as lbl < R; t he  responses w i l l  be valid.  

y l ( t )  + y 2 ( t )  = c ( t )  = Ro. 
x ( t )  i s  forced t o  have the  decaying exponential  motion of f igu re  31, 

Figure 32(a) is  i n  general  terms and so long 
With b = 0, the  results 
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c7;n-I p) 
e 

Figure 32.- Optimum motion of the input, x(t), for a type 1 
second-order plant. 

correspond to the condition for 
first-order case; b will be positive for -rl > -r2 and negative for 
71 < -r2. If -rl is considerably smaller than -r2, b will gradually 
increase in the negative direction as the size of the input step is 
increased until 
larger inputs. Figure 32(b) is in general terms and for T~ = 0, it 
gives the bang-bang solution expected for a second-order system with no 
zeros. 

T~ = T ~ ,  which reduces the plant to the 

b = -B, then the solution of figure 32(b) is used for 

One thus proceeds to write the Laplace transform of the x(t) motions 
shown in figure 32 and then, by forcing 
finds the relationships between Ro and the undetermined coefficients b, 
Tm, and TI. 

E(s) to be an entire function, 

Considering x(t) as shown in figure 32(a) 



. 
R O  E(s) = -  - B 
S L (s + k) 1 
RoS(T~S+~) -BK ( T l S + 1 )  + - B e -sTml 

J 
There are two potential singularities of 
a second-order one at At 
both these potential singularities, E(s) must be finite in order to be 
entire. Thus evaluating E( s) first at s = - 1 / ~ ~  gives 

E ( s )  indicated in equation (60), 
s = 0, and a first-order one at s = -1/~~. 

The numerator of equation (61) must therefore be zero, giving 

Differentiating the numerator and the denominator of equation (60) will 
show E ( s )  is finite at s = - l / ~ ~  if equation (62) is satisfied. 

One next finds the relationship required to force E ( s )  to be finite 
at s = 0. 

Evaluating the 0/0 by differentiating the numerator and denominator of 
equation (60) with respect to s gives 
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. 
And again, s ince E ( s )  must be e n t i r e  

RO 1 

BK B 
-=T,+- 

Rewriting equation (62) , solved for b/B, gives 

The desired so lu t ion  is  obtained by solving equations (65) and (66) under 
t h e  constraint  t h a t  Ib/BI 5 1. 
t h a t  if -r2/-r1 5 2, t h e  so lu t ion  i s  always va l id .  For T ~ / T ~  > 2, t h e  
solut ion is v a l i d  f o r  Tm 
I b/B I = 1 i n  equation (66). 
form of 

Thus, it can be seen from equateion (66) 

l e s s  than or equal t o  t h e  value t h a t  gives 
For l a r g e r  values of Tm, one must use t h e  

x(t) given by f igu re  32(b) which i s  now considered. 

1 S2 ( T 2 S + 1 )  

Forcing 
previously gives 

E(s) t o  be an e n t i r e  funct ion i n  the  same manner as was done 
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Equation (71) cam be solved for T1 in 
The results are - 

49 

terms of T, or vice versa. 

The solutions of (70) and (71) are only valid for ( b / B l  of equation (66) 
greater than unity. 

,, ,, - \ The soiutions roi- this plant vere co!!ipiit.&. by izes,~~s of eqlxtiLins ( 0 2 ) )  
(66), ( T O ) ,  and (71). 
convenient to normalize with respect to -r2 and plot results for various 
values of the ratio T ~ / T ~ .  
and 34. One should note again in using these results that T1 = Tm for 
small values of R,/KBT~ so long as T~ has any value whatsoever. 

As can be recognized f r o m  the equations, it is 

These results are presented in figures 33 

20 
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Figure 33.- Optimum first reversal time for a type 1 second-order plant, 
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Figure 34.- Minimum response time f o r  a type 1 second-order p l an t .  

A considerable improvement i n  minimum response time can be achieved 
i f  t h e  zero i s  much c lose r  t o  the  o r ig in  than the  pole.  

3.6 A Type 1 Third-Order P lan t  

The plant  t r a n s f e r  funct ion for t h i s  example is  

The optimum motion of 
a minimum time with r ( t )  = 

i n  order  f o r  c ( t )  t o  be reduced t o  zero i n  
Rou(t)  and zero i n i t i a l  conditions must be . .  

found f i r s t .  If 5 i s  g rea t e r  than 1, a simple i n t u i t i v e  argument suf- 
f i c e s  t o  show t h a t  
t he  number of reversa ls  i s  two. This argument i s  f a c i l i t a t e d  by 
considering the block diagram of f igu re  35. 

x ( t )  should be a t  i t s  maximum a l l  t he  time and t h a t  
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Figure 35.- Block diagram of a type 1 third-order  p lan t .  

The problem i s  t o  force  c ( t )  t o  move t o  a value of Ro and a r r i v e  
there  with 6 = 'd = 0. 

JTm6 d t  t o  be a maximum with the  constraint  t h a t  

To have the  minimum response time we des i r e  

To force t ( t )  t o  ab ta in  a maximum va. l i ie  it seems zbvious that. x shlsuld 
have i t s  maximum value i n i t i a l l y  and hold t h a t  value as long a s  permis- 
s i b l e ,  s ince f o r  x = B, 6 asymptotically approaches +KB. We may then 
use t h e  theorem of  reference 4 on 
from i n i t i a l  conditions t o  zero i n  a minimum time. 
t h e  optimum motion of  x ( t )  should 
be a s  shown i n  f igu re  36. I f  5 
is  l e s s  than 1, i n t u i t i o n  s t i l l  
t e l l s  us t h a t  t h i s  is  a reasonable 
motion of x. Experiments were 

which v e r i f i e d  t h a t  two reversa ls  
a r e  s u f f i c i e n t  and furthermore 
indicated the  motion pictured i n  
f igu re  36 appeared t o  be optimum 
except perhaps for low values 
o f  5 .  
values of 5 
between Ro, (, %, TI, and Tm i n  the same manner used previously.  

s ince  w e  want it t o  be res tored  
This says then t h a t  

I - 
I 
I - & 7; 

-G I -B 
conducted with an analog computer l----rm- 1 

Figure 36.- Optimum motion of t h e  
input ,  x ( t ) ,  f o r  a type 1 t h i r d -  
order p lan t .  

We s h a l l  assume t h a t  t h i s  represents t he  optimum motion f o r  a l l  
which a r e  pos i t ive  and proceed t o  f i n d  the  re la t ionships  

X ( t )  = B[u( t )  - 2u(t-T1) + 2 ~ ( t - T 2 )  - U ( t - T m ) ]  ( 74) 

Solving f o r  t he  
forc ing  

L [ x ( t ) ] ,  using equation (48) t o  obtain E ( s ) ,  and 
E ( s )  t o  be an e n t i r e  function gives the  following equations: 
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1 - 2e + 2e - e  = o  

. 

Note tha t  t he re  are two equations given i n  ( 7 5 ) ,  one f o r  t h e  pos i t i ve  
s ign  and one f o r  t he  negative; thus,  f o r  any f ixed  value of 
are three equations f o r  t h ree  unknowns. 
ized by p l o t t i n g  %TI and ChT, vs.  (Ro/KB)% f o r  various values of <. 

Ro/KB, t he re  
These equations a r e  bes t  normal- 

The so lu t ion  of equations (75) and (76) can only be obtained by some 
i t e r a t i v e  process.  This w a s  accomplished here by s e t t i n g  up an i t e r a t i v e  
procedure on a d i g i t a l  computer. The r e s u l t s  of t h e  ca lcu la t ions  a r e  
shown i n  f i gu res  37 and 38. 

? 
c*: 
I- 
C 

Normalized step input magnitude, Ro wn 

Figure 37.- Optimum first r eve r sa l  time f o r  a type 1 th i rd-order  p lan t .  
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Ro un 
KB 

Normalized step input magnitude, - 

Figure 38.- Minimum response time for a type i iiiirii-fii-der p a n t .  

Included a l s o  i n  t a b l e  I1 are the  points of t h e  curves near t he  o r i g i n  
where, because of t h e  sca l e  chosen, it i s  d i f f i c u l t  t o  read the  curves 
t o  any degree of accuracy. 

Table 11.- 

0 - 5  
1.0 
1.5 

* 5  
1.0 
1.5 

.5 
1.0 
1.5 

.5 
1.0 
1.5 
1.049 
2.098 

Optimum r eve r sa l  times f o r  a type 1 third-order  p lan t  

1.742 
2 895 
3 717 
1.661 
2.726 
3.484 
1.556 
2.536 
3.256 
1.477 

3.127 
2.411 

2.401 
3.800 

3.1719 

1.704 
.8148 

* 1475 
.6662 
1.370 
.1186 
.5080 
1.035 
.09866 
.4086 
-8325 
3718 

1.192 

5 
-l 

} -25 
} -50 
} *75 
1.00 i 

- 
WnT1 
0.5 

1.5 
-5 
1.0 
1.5 
.5 
1.0 
1.5 

- 5  
1.0 
1.5 

- 
1.0 

_p 

1.328 
2.217 
2 973 
1.262 
2.156 

1.196 

2.926 
1.130 
2.038 
2.930 

2.946 

2.094 

&n 

1 06379 
.2544 
5252 

- 05509 
.2014 
.4209 
.03078 
.1423 
* 3113 
.00940: 
.lo14 
.2102 

r: 
}1*5 

}2.0 

)30 

}5*0 
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As can be noted from figures 37 and 38, the first reversal time and 

( = 0.1the curves become quite oscillatory and for certain ranges 
minimum response time decrease for decreasing values of (. However, 
for 
of step input the optimum times are larger for 
This suggests that for low values of ( a larger number of reversals of 
the bounded variable may be necessary to obtain the minimum response time 
for certain ranges of the step input magnitude. For a different treatise 
on this third-order plant transfer function see FlCgge-Lotz and Ishikawa 
(ref. 15). 

= 0.1 than for 5 = 0.25. 

3.6.1 Asymptotic solution f o r  very large inputs.- The data presented 
in figures 37 and 38 were obtained by an iterative procedure on a digital 
computer. To extend this data to larger values one would need to use 
this same iterative procedure again unless a short cut is possible. It 
is the purpose here then to derive the asymptotic solution of equations 
(75) and (76) which is valid for large inputs. This asymptotic solution 
is sufficiently accurate for inputs in excess of those values shown in 
figures 37 and 38 to allow it to be used should an extension of the curves 
be necessary. 

For large inputs one can see from previous arguments that large 
values of T1 of figure 36 will be required. As was mentioned with 
reference to figure 35, 6 is bounded. As a matter of fact, when x is 
equal to +B and so long as 
will approach zero. With reference to figure 36 it can be recognized 
that T,-T1 and T2-T1 will approach constants as T1 C O . ~  The time 
required for e to reach its steady-state value (or at least within a 
few percent of it) can be obtained from the step responses for a second- 
order system given in figure 39. For example, when ( = 0.9, 6 will 
reach its steady-state value (for all practical purposes) if the first 
reversal time, TI, is greater than 

( > 0, 6 will gradually approach KB and 'd 

2~r/%, that is, TI > 2n/%. 

? 
w 
P 
0 

In this example f o r  large inputs T,-T1 and T2-T1 approach 
constants which are a function of the damping ratio and natural fre- 
quency. Multiplying equation (76) by % and rewriting it in terms 
of Tm-Tl, T2-T1, and T1 gives 

RO - % = - %2(~2-~1) + (Tm-T1)% 
KB 

( 77) 

~~ ~ ~~~ 

See reference 15 for a good visualization of this statement. 2 
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Figure 39.- Step responses of a second-order system. 

where Tl* = (T2-T1)% and T2* = (T,-T1)%. To solve for T1* and T2* 
it is convenient to use a partial fraction expansion of the original 
system and define state variables yl(t), y2(t), and y3(t) as shown in 
figure 40. 
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Figure 40.- Block diagram of  a type 1 third-order  p l an t .  

From f igure 40 it can be recognized t h a t  i f  
y 2 ( t )  = 0 a t  T1 and must a l s o  be zero a t  Tm. We can re-define t h e  
time axis  i n  terms of t-T1 and l e t  

T1 i s  la rge  enough, then 

Then deriving x ( t* )  and L [ x ( t * ) ]  one can now force  L[y2( t* ) ]  t o  be 
an e n t i r e  funct ion s ince  y2(t*) i s  t runcated i n  t h e  range 0 < t* 5 t2* 

-stl* -e -st2* -2+2e 
L[Y2(t*)I = 

- s2 2cs + 1 - + -  

I n  terms of t he  normalized t i m e s ,  T1* = %tl* and T2* = %t2*, the  f a c t  
t h a t  equation (80) must be an e n t i r e  funct ion gives 



These two equations (81) were solved by t r i a l  and e r r o r  methods f o r  TI* 
and T2* a s  a funct ion of 5 and t h e  r e s u l t s  are p lo t ted  i n  f igu re  41. 
One should note t h a t  t h e  i n i t i a l  assumptions are inva l id  f o r  5 = 0 and 
t h a t  f o r  5 = 1 one must d i f f e r e n t i a t e  equation (80) with respect  t o  x 
t o  solve f o r  t h e  t ranscendental  equations. This d i f f e r e n t i a t i o n  i s  neces- 
sa ry  because t h e  two poles  of t h e  t r ans fe r  funct ion a r e  not  d i s t i n c t  
f o r  5 = 1. 
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Figure 41.- Normalized data  for  asymptotic solut ions.  

One can thus use the  results of f igure 41 placed i n  equation (78) 
t o  f i n d  Ro vs.  TI  f o r  values o f  R, grea te r  than those given previously. 



Since %Tm = ($,[TI + (T2*/b+,)], the equation relating T, and R, 
is (from eq. (78)) 

3.7 A Type 2 Second-Order Plant 

For this example G ( s )  = K/s~. The optimum response curves were 
derived in chapter I1 by a simple area integration. One can also obtain 
them using the entire function concept. Only the results given by 
equations (83) and (84) and in figure 42 are presented. 

Tm = 2E 

0 I 2 3 4 5 
Normalized input step magnitude,- ff0 

KB 
Figure 42.- Optimum switching times for a type 2 second-order plant. 
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3.8 A Type 2 Third-Order Plant 

.- 

0 
4 
M 

T 
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For this example G ( s )  = K ( T ~ s + ~ ) / s ~ ( T ~ s + ~ ) .  One can determine the 
optimum motions of 
The two possible motions of 

x(t) by arguments similar to those of section 3.5. 
x(t) are shown in figure 43. 

(a)  ( b) 
Figure 43.- Optimum motion of the plant input, x(t), for a 

type 2 third-order plant. 

The eolc t innc :  u s ing  
so long as Ib/BI 5 1. 
T~ = 72 which is given in section 3.7. 
then the results are invalid and one must use the solution obtained 
f o r  x(t) of the form shown in figure 43@). 

x(t) of the form shown in  figure k3(a) will be valid 
For b = 0 the solution will correspond to 

If Ib/Bl > 1 in this solution, 

If x(t) is as shown in figure 43(a) then 

X(t) = B 
b 
B u(t) - 2u(t-T1) + u(t-Tm) t - u(t-T mi \ e  

and 
manipulation, becomes 

E(s) = (Ro/s) - X(s) G ( s )  which for this example, after some 
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I - 

Since E ( s )  must be e n t i r e ,  E ( s ) l  must be f i n i t e .  

Equations (88), (89),  and (90) give t h e  r e l a t ionsh ip  between t h e  param- 
e t e r s  which force 

and E ( s ) l  
S = -1172 s =o 

E ( s )  t o  be an e n t i r e  function. 

(89) b 
B 

2T1 - Tm + - 1-1 = 0 

These equations i n  t h e i r  present form a r e  not usable.  
mathematical manipulations obtain a f o r m  su i t ab le  f o r  ca lcu la t ion .  
equation (88) 

One can through 
From 

Solving f o r  b/B 
gives 

i n  equation (89) and put t ing  the  r e s u l t  i n  equation (91) 

then 

One now adds and subt rac ts  a term t o  a l l o w  f o r  t h e  completion of t he  
square 

and changes terms around t o  give 

P 
I 



or 

The negative sign must be used s ince for pos i t ive  
s ide  of equation (97) is  l e s s  than unity. F ina l ly  

TI  t h e  lef t -hand 

I I 

Now reviewing the  de f in i t i on  of t* (eq. (93)) and comparing w 
t i o n  (89) shows or normalizing with respect  t o  t* = -(b/B)T1 

t h  equa- 
72 

Since I b/B 1 5 1, one can use equation (99) t o  determine t h e  maximum 
value of t*/72 permissible f o r  any given r a t i o  of T ~ / T ~ .  A l i t t l e  
fu r the r  thought and study of f igu re  43(a) allows one t o  determine the  
s ign  of t* as follows: 

If T~ = -r2, t* = 0 since b/B must be zero. 

If T ~ >  T ~ ,  b/B must be negat ive. ' . t*  i s  pos i t ive .  

If T~ < T ~ ,  b/B must be p o s i t i v e . ' . t *  i s  negative.  

Equation ( 9 0 )  can be normalized by dividing by 722 giving 
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One can thus compute curves relating normalized T1 and Tm versus 
the normalized input magnitude, Ro, for various values of the ratio 
1 - ~ / 7 ~ .  The procedure is to determine the range of permissible values 
and the sign of t * / ~ ~ .  Then one sets up a table for t * / ~ ~  in this 
range and uses equation (98) to obtain can be obtained 
from equation (93). 
the normalized Ro. 

T1/72; Tm/7* 
These values are then used in equation (100) to find 

Equation (91) shows that so long as 72/71 5 2 then Ib/BI 5 1. For 

x(t) motion given 
values of T ~ / T ~  

Ib/BI = 1, and then one must use the solution for the 
in figure 43(b). 

greater than 2 one can use the above solution until 

This motion is now considered. 

If x(t) is as shown in figure 43(b) then 

-sT1 - s T ~ - ~ - S T ~  
+2e + 

S 
x(s) = B 

and E ( s ) ,  after some manipulation, is given by 

The relationships between the quantities which make E(s) an entire 
function are 

2T1 2T2 Tm 71 - - -  + - + - = o  
72 7-2 72 72 



One can el iminate  
manipulations obta in  the  following: 

T, from equations (104) and (106) and a f t e r  ce r t a in  

One computes t h e  r e s u l t s  by f i r s t  assuming 
equation (107) f o r  T 2 / ~ 2 .  One then uses equation (104) t o  obtain Tm/'r2 
and equation (105) t o  obtain One should note again t h a t  these  
r e s u l t s  a r e  only f o r  
They must be pieced together  with the  previous so lu t ion  given by equa- 
t i o n s  (93) ,  (gS), ( ( r~ l ) ,  and (100). 

T1/-r2 and then solving 

R , / K B T ~ ~ .  
-r2/7-= > 2 and represent only p a r t  of t he  so lu t ion .  

The optimum f i r s t  r eve r sa l  time, T1, and miniIriua response time, T m, 
versus t h e  input s t e p  magnitude, Ro, are  given i n  normalized form i n  
f igu res  44 and 45. 
t i o n  i n  response time i s  possible  if the  zero i s  c lose r  t o  the  o r i g i n  
than t o  the  pole ,  t h a t  is ,  i f  

A s  can be noted from f igu re  45, a considerable reduc- 

T ~ / T ~  > 1. 
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Figure 44.- Optimum f i r s t  r eve r sa l  time for a type 2 th i rd-order  p l an t .  
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Figure 45.- Minimum response time f o r  a type 2 th i rd-order  p l an t .  

3.9 A Type 2 Fourth-Order Plant  

For t h i s  example 

K G ( s )  = 

According t o  the  theorem of reference 4 and arguments following l i n e s  
presented previously (see sec.  3.6) x ( t )  w i l l  have t h r e e  reversa ls .  
general  motion is  given by 

The 

x ( t )  = B[u( t )  - 2u(t-T1) + 2u(t-T2) - 2u(t-T3) + ~ ( t - T m ) ]  (108) 

The same procedure can be followed through as was done i n  previous 
examples, and i n  order  t h a t  
must be s a t i s f i e d  

E ( s )  be e n t i r e ,  t h e  following equations 



a0 -2TI2 + 2TZ2 - 2T32 + Tm2 = - 
KB 

A s  was the  case f o r  t he  type 1 third-order p lan t  ( sec t ion  3.6) an 
i t e r a t i v e  procedure must be used t o  solve these  equations.  
a r e  bes t  normalized by obtaining solutions f o r  
t i m s  nf Ro%2/KB f o r  various values of  t h e  damping r a t i o  I;. The 
s i l i i t l z n  as cbtained by a d i g i t a l  computer is  plotted in figses 46 zr_d 47. 
Table I11 also gives some of t h e  values n e u  t h e  o r ~ g i n s  where the curves 
are d i f f i c u l t  t o  read with any accuracy. 

The equations 
%TI and %Tm as func- 
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Figure 46-- Optimum f i r s t  reversa l  time f o r  a type 2 
fourth-order p lan t .  
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Figure 47.- Minimum response time for a type 2 fourth-order plant. 
Table 111.- Optimum reversal times for a type 2 fourth-order plant 
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As was the case for the type 1 third-order example, the data 
presented in figures 46 and 47 indicate that a larger number of reversals 
may be required in order to obtain the optimum response for low values 
of (. This is hypothesized since the minimum response time and first 
reversal time for 
ranges of input step magnitude. 

5 = 0.1 is larger than f o r  5 = 0.25 for certain 

~n asymptotic solution for large inputs is also possible for this 
example in quite the same manner as was done for the type 1, third-order 
problem. This solution is now considered. 

3.9.1 Asymptotic solution for a type 2 fourth-order plant.- The 
fourth-order plant can be visualized as shown in figure 48. From this 

Figure 48.- Block diagram of a type 2 fourth-order plant. 

diagram it can readily be seen that with x at its bounded value, .. c w l l l  
approach a steady-state value of 
practically identical to the previous one. 
be as shown in figure 49. 

KB for 5 > 0. This example then is 
The optimum switching will 

It thus can be seen that if we define 

Figure 49.- Optimum motion of the plant input, x(t), for a type 2 
fourth-order plant. 

(T3-T2)% = Tl* and %(Tm-T2) = T2* then the results of the previous 
solution given in section 3.6.1 can be used in the asymptotic solution 
for this example. 

The results are valid for T2 long enough so that .. c is very close 
to the steady-state value (i.e., %': 0). 
equation (111) and using the above definitions of 
certain manipulations gives 

Combining equation (110) with 
TI* and T2* after 
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%Tm = 2T1* + 2 /3T1*' + - Ro %2 - 2Tl?C2* 
KB 

Equations (112) and (11.3) a r e  s u f f i c i e n t l y  accurate  t o  allow t h e  
extension of t h e  curves of f igures  46 and 47 t o  l a r g e r  values of  
Ro%2/KB f o r  ( 5 2 ;  T1* and T2* i n  equations (112) and (113) are obtained 
from f igure 41. 
curves by f ac to r ing  the second-order equation ( s ~ / ( & ~ ) + (  2(s /%)+l  o f  
the  denominator of G (  s )  i n t o  an equation of form ( s T l + l )  ( s T + l ) .  The 
smaller o f  t he  two time constants i s  assumed zero and 
mated by G ( s )  = K/s~(sT+~). 
type 2 third-order system presented i n  f igu res  44 and 45. 

For 5 > 2 one can obtain an accurate  extension of  t he  

G ( s )  i s  approxi- 
This allows one t o  use t h e  da ta  f o r  a 

3.10 A Type 3 Third-Order P l a n t  

For t h i s  case use of  t h e  theorem of reference 4 and previous 
arguments gives 

X ( t )  = B[u( t )  - 2u(t-T1) + 2u(t-T2) - u(t-Tm)]  

The solut ion of  the  equations which must be s a t i s f i e d  i n  order 
t h a t  E(s) be e n t i r e  are 

11 3 

T 1 =  (2) 
11 3 

Tm = (g) 
These resul ts  a re  p lo t t ed  i n  f igu re  50. 
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Figure 50.- Optimum switching times f o r  a type 3 third-order  p lan t .  



IV. EXAMFLES OF SATURATED CONTROL SYSTEMS 

4.1 Introduction 

It is the purpose of this chapter to apply the methods proposed in 
chapter I1 to examples of control systems. 
has already been shown for second-order plants, so consequently we shall 
use third-order plants. In addition, the examples chosen are for two 
different types of third-order plants, namely, type 1 and type 2. 

The validity of the procedure 

For reasons of the author’s familiarity with the subject, both 
examples are aircraft autopilots. 
ization of the rigid body equations of motion for an aircraft (ref. 16), 
a rate-limited control-surface servo in a bank-angle autopilot is equiv- 
alent to saturation on the input to a type 2 third-order plant. 
a rate-limited control-surface servo in a normal acceleration autopilot 
provides a type 1 third-order plant. 
which also must exist, will be neglected in this study. 

A s  can be found by appropriate linear- 

Similarly, 

Control-surface position limiting, 

For reasons of simplicity, the aerodynamics used will be identical 
to those in two previous reports. 
autopilot are the same as those of reference 5 (F-86 at a representative 
flight condition). 
pilot are the same as those of reference 8 (F-100 at a representative 
flight condition). 

The aerodynamics for the bank-angle 

The aerodynamics for the normal acceleration auto- 

The purpose of choosing these examples is to allow some practical 
significance to be attached to the numerical results. 
chosen for illustrative purposes, however, and no claims are made regard- 
ing the suitability of these designs for their respective aircraft. 

The examples are 

4.2 A Sampled-Data Bank-Angle Autopilot (Feedback Design)’ 

Reference 5 showed a continuous bank-angle autopilot in which a 
nonlinear error function was designed to compensate for a limit on the 
control-surface velocity. It was shown there that a linear error gain 
resulted in an unstable system for large step inputs. The method used 
to design the nonlinear error function to give a good response for large 
inputs was essentially the same as the method described in chapter 11. 

In this section we shall design a saxpled-data bank-angle autopilot 

The design will use output velocity feedback for 
whose linear behavior is determined by the dominant mode of the continuous 
system of reference 3 .  
stabilizing purposes. In the next section we shall design an autopilot 
in which the digital computer is used to obtain the stabilizing quantity. 
’Feedback w i l l  hereaf “ i e r  be abbreviated as FB . 
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These two designs will illustrate two different sampled-data systems 
and the usefulness of the techniques of chapter I1 for analyzing both, as 
well as for synthesizing nonlinear functions for both. 

- Digital computer- - Servo - Aircraft - 
.C(Z) r-)-- r-/ ' -- ff(4 

! T  

Rate gyro 

Kc s 

Free gyro 

I I 

r ( t )  = Input bank angle, deg 
6 ( t )  =Ai leron deflect ion,deg 
c( t )  =Output bank angle, deg 

Figure 51.- Block diagram of a sampled-data bank-angle autopilot; 
FB design. 

Consider the block diagram of the autopilot shown in figure 51. The 
symbols are defined on the figure. The limiter in this case has unity 
gain a ~ d  a limit level of +1 which corresponds to a maximum aileron rate, 
6max, of 30' per second. 

This system differs from figure l(b) since both continuous and 
sampled feedbacks are used around the limiter. The continuous feedback 
here is the control-surface deflection. The sampled feedbacks are the 
sum of the outputs of roll-rate and roll-position gyros. 

Prior to considering any nonlinear characteristics of this system, 
it is necessary to establish a linear design. For this purpose we shall 
design the sampled-data system to have the same dominant mode as the con- 
tinuous system given in reference 5 .  In reference 5 the gains were chosen 
in order to obtain a good transient response. This results in a transfer 
function, C(s)/R(s), given by equation (116). 

1 - -  c(s) 



Equation (116) shows the dominant second-order mode characteristics 
to be % = 11.04, { = 0.744. 

The next item which must be chosen is the sampling period, T. 
Experience has shown that if the sampling frequency is at least 10 times 
the dominant-mode frequency, no difficulties are involved in designing 
the sampled-data system. For this reason, the sampling period is chosen 
as T = 0.05,  which gives a sampling frequency of 20 cycles per second. 

One can now transfer the dominant mode from the s plane to the z 
plane and establish positions of desired modes (in the z plane) of the 
pulse transfer function, c(z)/R(z). 

These are, after factoring the second-order equation, 

z = 0.6186 2 0.2391i (117 1 
With reference to figure 51, one can derive the characteristic 

equation of the pulse transfer function, C(z)/R(z) 

1 +Z[('-z'ST)( 1+0.02s )( s ( s +  27 3.333) )(K,+Kes)] (118) 

Since the system is third order (see fig. ?l), this characteristic equation 
must also be third order because no poles are added by the digital computer 
pulse transfer function in this example. The desired characteristic equa- 
tion is obtained by expressing the desired dominate modes of equation (117) 
in polynomial form and multiplying by a second first-order factor as given 
in equation (119). 

-1 (1 - 1.2372 + 0.4398z-')(c~ + c,z-l) 
Now e o ,  el, K,, and Ke are all undetermined coefficients. To find 

their values, one must carry through the process of equating equal powers 
of z-l between equations (118) and (119). The details are not given 
here but the results are 

Only the ratio of cl/co is specified here since co really affects 
the gain and has no bearing on choosing the roots of the characteristic 
equation. 
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t o  equation (119) shows all the  roots  of the  c h a r a c t e r i s t i c  
ins ide  the  u n i t  c i r c l e  i n  t he  z plane. If the  magnitude 
been grea te r  than uni ty ,  one would f i n d  t h a t  it would be 

necessary t o  repeat  the  process using a higher sampling frequency o r  some 
o ther  lower frequency dominant mode. 

The l i n e a r  design i f  now completed. We s h a l l  now use the  methods of 
chapter I1 and da ta  of chapter I11 t o  analyze the  system for s t e p  inputs .  

F i r s t ,  wi th  reference t o  f igu re  51, it can be seen t h a t  w e  are deal ing 
with a type 2 th i rd-order  plant;  t h a t  is, the  t r a n s f e r  funct ion r e l a t i n g  
the  sa tura ted  quant i ty ,  x ( t ) ,  t o  t h e  output, c ( t ) ,  i s  given by 

Application of ru l e  I1 of chapter I1 shows t h a t  we can expect the 
response t o  become more o s c i l l a t o r y  as the  input s t e p  t o  the  system i s  
increased. We do not  know whether the system i s  unstable  o r  not as the 
l i m i t e r  gaia I s  reihced. and f c r  t h i s  p i rpme a l o c i  of pole pos i t ions  
as a funct ion of l i m i t e r  gain has been computed. 'Tnis i s  showr, Fr, f i g -  
ure  52 where it can be seen t h a t  the  system i s  unstable f o r  low values 
of l i m i t e r  gain.  

Re z 
Figure 52.- Pole pos i t ion  l o c i  as a funct ion of the l i m i t e r  gain; 

FE! design. 
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A note should be added that one cannot use conventional root-locus 
procedures to determine the loci of pole positions in the 
This is a result of the continuous feedback around the limiter of fig- 
ure 5lwhich causes the zeros as well as the poles to shift as a function 
of the limiter gain. To obtain the pole position plot it is necessary to 
compute the roots of the denominator of 
computational process. 

z plane. 

C(z)/R(z) which is not a simple 

It is necessary to determine the size of the inputs which cause this 
oscillatory performance to exist. 
time analysis method explained in chapter 11. 
which causes poor performance is out of the range of practical interest, 
then no nonlinearities are required. If, however, they are within the 
range of practical interest, we shall have to design a nonlinear function. 
For this example, it is probable that step inputs from Oo to 90° should 
be considered as the practical range. 

This will be done using the switch 
If the step input magnitude 

The optimum first reversal time and minimum response time are given 
for this example in figures 44 and 45 of chapter 111. To use these data, 
it is necessary to obtain the time constants and gain for the plant which 
are given in equation (121). The limit level, B, is unity as can be seen 
by inspection of figure 51. 
response time can thus be determined. 

The optimum first reversal time and minimum 

The next step is to determine the actual first reversal time as a 
function of the input step size, Ro. 
if R, > 1/K, = 0.5' and 6(0) = E ( 0 )  = c(0) = 0, saturation will occur. 
Thus, we shall only be concerned with step inputs greater than approxi- 
mately 0.5'. m(t) of figure 51 
for a unit step of This expression can be derived directly from 
figure 51 and is given in equation (122). The symbol, n, is an integer 
which is equal to zero at the first sampling instant after the step is 
applied. The time origin, t = 0, also starts at this same instant. 

It may be noted from figure 51 that 

What is desired is an expression for 
x(t). 

After putting in the values for K?, K,, and T, and carrying through 
the inverse Laplace transforms indicated in equation (122), the result is 

(0*05n)2 +128.38( 0.05n) -38.51+38. 
2 

m( t ) = 2.158ROu( t ) -5ot -873.92 

(123) 
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The relationship between t and n is as follows: 

O s t < O . O 3  n = O  

0.05 5 t < 0.1 n = l  

0.1 <_ t < 0.13 n = 2 

etc. 

The continuous signal of m(t) which is a result of control-surface 
deflection feedback makes the first reversal time continuous rather than 
staircase as was the example carried through in chapter 11. 
purposes, however, it is much simpler to consider only 
mine the staircase curve relating 
later are not particularly affected by this simplification. 

For computing 

The results as will be shown 
m(O.03n) and deter- 

Ro to T,. 

To find Ro for a particular value of n (or Tl), one sets m = -1 
in equation (123) to find the right-hand side of the curve given in fig- 
ure 53. The left-hand side of the curve for the n + 1 value of T1 is 
found by setting m = 1 in equation (123) and finding Ro to satisfy the 
equation. Dotted lines are drawn between these two values of Ro in 
Ai  5igur- r -  5 3 .  
a value of n as is required to cover  I h e  range of i n x e ~ . r r , t  of R,. 

One thus proceeds "walking up ?;he staircase,!' t ak ing  as high 

.6 

0 

Figure 33.- First reversal times for a sampled-data 
LQv- uuLJL-angl~ .- autopilot; FB design. 



Inspection of f igu re  53 shows t h a t  overshoot due t o  l i m i t i n g  can be 
expected f o r  s t e p  inputs  g rea t e r  than about 5'. 
f i e d  by the  analog computer responses of the  system shown i n  f igu re  54. 

This hypothesis i s  v e r i -  

R, = 40° 
c3r 

L 80 
n 
\ 

u 
a 
0, 

v 

c. 

3 

'0 40 

n 

Y 
c 
0 

c 
3 a 
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0 = o  .4 .8 I .2 I .6 2.0 
Time, sec 

. 

? 
0' 
w 

Figure 54. - Step responses of a sampled-data 
bank-angle au topi lo t ;  FB design. 

One i t e m  of importance which can be seen by comparing f igu res  53 
and 54 i s  t he  accuracy with which one can compute the  f i r s t  overshoot 
using the da t a  of f igu re  53.  
curves of f igu re  53 indica te  the  overshoot t o  be 8 8 O ,  3 9 O ,  and lTo, 
respect ively.  
wi th  these values .  
i s  obtained by pro jec t ing  the f i r s t  r eve r sa l  t i m e  from the  a c t u a l  curve, 
f o r  a given s t e p  input ,  t o  the optimum curve. 

For s t e p  inputs  of bo, 20°, and loo, the  

The overshoots shown i n  f igu re  54 a r e  i n  good agreement 
A s  w a s  mentioned i n  chapter  11, the  f i r s t  overshoot 

Perhaps, p r a c t i c a l l y  speaking, it i s  unnecessary t o  compute response 
times f o r  t h i s  system s ince  i t s  response i s  so  poor one would su re ly  want 
t o  design a nonlinear funct ion t o  improve the  cha rac t e r i s - t i c s .  To give 
the  reader some confidence i n  the  method described i n  chapter  11, however, 
t h i s  computation i s  compared with the  data measured from analog computer 
r e s u l t s  and the  minimum curve (obtained from chapter  111) i n  f igu re  55. 
The measured data are the time for the  e r r o r  t o  be within 10 percent of 
t he  s t e p  input amplitude f o r  e r r o r s  l e s s  than 100 and f o r  t he  e r r o r  t o  be 
l e s s  than 1' f o r  inputs  g rea t e r  than loo. 
obtained ( f o r  l a rge  inpu t s )  by use of t he  method explained i n  chapter  11, 
with  the  exception t h a t  a continuous curve w a s  faired through the  middle of 
t he  s t a i r case  curve given i n  f igu re  53. The dot ted  port ion of t he  curve 
w a s  computed by taking the  value of t i m e  when the  envelope of t he  damped 

The ca lcu la ted  curve w a s  
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E: 
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Input step magnitude, R,, deg 

Figure 55. - Calculated, measuredj z.nd r n l n i x ~ ~ ~  respmse %in?; 
f o r  the  sampled-data bank-angle au topi lo t ;  FB design. 

s ine  wave (obtained by tak ing  the  inverse of eq.  (116) f o r  a s t e p  input )  
w a s  10 percent of t he  input  s t e p  magnitude. Although t h i s  i s  a sampled- 
data system, r a the r  than a continuous system, previous work (ref.  8) has 
shown t h a t  the  sampled-data-system response w i l l  be very close t o  the  
response of t he  continuous system from which it i s  derived i f  the  sampling 
frequency i s  high compared t o  the  dominant mode frequency. 

The calculated curve i s  seen t o  be i n  reasonable agreement with the  
measured data. 

The computation of a nonlinear compensation funct ion follows the  

The approximation 

One then solves 

method out l ined i n  chapter 11. 
approximation t o  the  optimum f i r s t  reversa l  curve. 
used here i s  shown i n  f igure  36. 
t he  f i r s t  reversa l  time f o r  use i n  equation (122). 
equation (122) f o r  K , c ( T ~ ) .  

The f i r s t  s t e p  i s  t o  obtain a s t a i r c a s e  

This gives the  input  as a funct ion of 
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I n  t'nis equation m ( T 1 )  i s  taken as zero and K t  i s  taken as a constant,  
0.3302. One solves f o r  K@(T1) f o r  various values of TI; Ro(T1) i s  
obtained from the s t a i r case  curve of f igu re  56. 

-6 

0 a 
in - 
h- 
6.4 
E .- 
t - 
0 
v) 

0) 
I 

' .2 5) 
2 
t 

.- 
L L  

0 20 40 60 80 IO0 
Input step magnitude, R,, deg 

Figure 56.- S ta i rcase  approximation t o  the  optimum f i rs t  
reversa l  curve. 

Since 

€ ( T i )  = Ro(Ti) - c(T1) (126 1 
the  r e su l t s  can be p lo t t ed  as a funct ion of the  e r r o r .  
curve i s  shown i n  f igu re  57. 

The computed 

For the modified system, the  d i g i t a l  computer operations a r e  

(1) Take the sampled e r r o r  s igna l  and from t h i s  compute the  
value of K € ( E ) E  given i n  f igu re  57. 

(2)  Subtract 

(3) Feed the s tored r e s u l t  (hold c i r c u i t )  t o  the  control-  

Kt;(nT) from the  r e s u l t  obtained i n  s t e p  (1). 

surface servo input .  

(4) Go back t o  s t e p  (1) a t  the  next sampling in s t an t .  

. 
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Figure 57.- Nonlinear function used to modify the 
sampled-data bank-angle autopilot; FB design. 
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Figure 58.- Step responses of the modified sampled-data 
bank-angle autopilot; FB design 
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The results of an analog computer simulation of these operations are 
shown in figure 58. 
damped, corresponding closely to the optimum as can be seen by comparing 
the response times of the step responses of figure 58 with the minimum 
shown in figure 55. 

As can be recognized, the response is very well 

A note should be added that this system does not obey the limitations 
imposed in chapter I1 since there is more than one zero in the expression 
G ( s )  H ( s ) .  Probably because this system is dominant second order for all 
values of the limiter gain, as can be seen in figure 52, we obtain good 
results by using only one nonlinear function. No further consideration 
of this subject is deemed necessary here because of these good results. 
This will also be the case in the example considered in the next section. 

4.3 A Sampled-Data Bank-Angle Autopilot, D(z) Design 

The block diagram of this example is shown in figure 59. As can be 
seen by comparing the figures 59 and 51, this example differs from the 
previous one by having a more complicated digital computer pulse transfer 
function which allows one to eliminate the rate-gyro feedback. 

-Digital computer - 

Free gyro 

r ( t )=  input bank angle, deg 
6 ( t ) =  Aileron deflection, deg 
C ( t ) =  Output bank angle, deg 

Figure 59.- Block diagram of a sampled-data bank-angle autopilot; 
D(z) design. 

With this choice of D(z) and the manner of computation indicated, 
one can obtain an analogy to error plus error rate which is used so 
often for stabilizing continuous systems. This is shown as follows: 
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. 

If one recognizes that 
E(t), then one can say from equation (127) that 

E(z)(l- z-’)/T is a two sample approximation of 

E(z) D(z)  = (constant)(error) + (constant)(error rate) (128) 

The various analogies such as this that exist between sampled-data 
systems and continuous systems designs are usually very helpful in pro- 
viding an understanding of Z transform operations. 

It is necessary for this example to determine the values of a. 
and a1 
For this purpose, the design is again obtained using the dominant mode 
of the system of reference ’j. The sampling frequency is a l s o  chosen to 
be identical to the previous example so the desired positions of the 
dominant mode in the 

of figure 59 which will give the desired linear characteristics. 

z plane are given by equation (117). 

The mathematical procedure is quite similar to the previous example. 
One could also use the method explained in references 7 and 8. 

One first writes the characteristic equation as follows 

1 + D(z) Z ] ~ - ~ - s ~ (  1+ 0.02s ) [ s ( s +  27 3.333) ]I = 0 (129 1 

The desired characteristic equation is 

(130 1 -1 -1 -2 (1- 1.2372 + 0.4398~-~)(~,+ clz + C ~ Z  ) = 0 

Note that we have now forced the desired characteristic equation to be 
fourth order. D(z) has one pole and therefore 
since the plant is third order, the over-all system must be fourth order. 

This is simply because 

The pulse transfer function D(z)  has two undetermined coefficients 
and the desired characteristic equation has three. One can equate equal 
powers of between equations (129) and (130) to solve for the unde- 
termined coefficients. In this case a l s o  only the ratios of c,/c, and 

z-l 

co/c2 have an effect on the roots 
therefore co may be chosen equal 

a. = 1.263 

a1 = 4.474 

-. - 
of the characteristic equation and 
to unity. The other coefficients are 

(131) 
c1 = -0.600 

~2 = -0.044 
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One finds the roots of the second-order part of equation (130) given 
by the coefficients 
These r o o t s  are 

co, cl, and c2 to make sure the system is stable. 

z = 0.666, -0.066 (132 1 
Thus, since all the poles of the pulse transfer function 

are well inside the unit circle and in well-damped regions of the 
plane, no change in sampling frequency or dominant-mode characteristic 
is necessary. 

C(z)/R(z) 
z 

The characteristics of this system for large step inputs remain to 
be determined. 
mode characteristics as the previous example, one should expect a great 
deal of similarity between the results. 

Since this example has the same plant and same dominant- 

The loci of pole positions as a function of limiter gain are shown 
in figure 60. 
gain. 
the denominator of the closed-loop pulse transfer function. 

The arrows denote the direction of increasing limiter 
As was the case previously, these loci were computed by factoring 

Figure 60.- Pole position loci as a function 
of the limiter gain; D ( z )  design. 

Figure 60 illustrates this system is unstable for low values of 
limiter gain and that one should therefore expect the system response 
to deteriorate with the input step magnitude. Further verification of 
this fact is demonstrated in the first reversal time curve2 of figure 61. 
Here it can be seen that the response should start to deteriorate with 

2These data are computed in a manner so similar to the previous one 
that no explanation is considered necessary. 
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Figure 61.- F i r s t  reversal  times Tor FL sax?led-dzla 
bank-angle autopi lot ;  D(z)  design. 
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Figure 62. - Step responses of bank-angle au topi lo t ;  
~ ( z j  design.  
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s t e p  input magnitudes grea te r  than about 13. This hypothesis i s  confirmed 
by the  s t ep  responses obtained from an analog computer which a re  presented 
i n  f igure 62. 

A s  w a s  t he  case f o r  t he  previous example, it may be noted t h a t  there  
i s  a good correspondence between the  f i r s t  overshoot determined from 
f igu re  61 and the r e s u l t s  given i n  f igu re  62. 

This pa r t i cu la r  design i s  more stable than the  previous example. 
The increase i n  s t a b i l i t y  can be noted by comparing f igu res  61 and 33 as 
wel l  as 62 and 54. 
the  present example than i n  the previous example before the  output 

These da ta  show t h a t  a l a r g e r  s t e p  i s  permitted i n  

? response s t a r t s  t o  de t e r io ra t e .  The reason f o r  t h i s  increase i n  s t a b i l -  
i t y  i s  p a r t i a l l y  explained by the  f a c t  t h a t  a. f o r  t h i s  system i s  0 

w 
P 

smaller than K, f o r  the  previous system. It may be noted t h a t  these 
parameters are  the  "steady s t a t e "  gain of the  d i g i t a l  computer. 
second poss ib i l i t y  could be associated with the  f a c t  t h a t  one zero of 
G ( z )  D ( z )  i s  "fixed" i n  the 
t h i s  example; whereas i n  the  previous example, all the  zeros of 
vary as the l i m i t e r  gain i s  var ied.  
t i g a t i o n  t o  consider t h i s  top ic  although the general  subject  of sampled- 
da ta  systems designed by the  dominant mode concept probably requires  
f u r t h e r  study. 

- 3  A 

z plane as the l i m i t e r  gain i s  var ied f o r  
Z [ G H ( s ) ]  

It i s  beyond the scope of t h i s  inves- 

The calculated and measured t o t a l  response times f o r  t he  present 
example, along with the minimum a re  shown i n  f igu re  63. The procedure 

Input step magnitude, R,, deg 

Figure 63.- Calculated, measured, and minimum response times f o r  the 
sampled-data bank-angle au topi lo t ;  D ( z )  design. 
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for ca lcu la t ing  t h e  response t i m e  w a s  the same as explained f o r  the 
previous example. The measured response time which w a s  obtained from 
computer results w a s  defined i n  the  same manner as f o r  t he  previous 
example, t h a t  i s ,  t he  time t o  within 10 percent of t h e  input s t e p  magni- 
tude for inputs  l e s s  than 10' and t i m e  t o  within lo for inputs  g rea t e r  
than 100. The results between the measured values and computed values 
show f a i r  agreement. For l a rge  inputs, however, t he  response time i s  
very long. We s h a l l ,  therefore ,  design a nonlinear funct ion t o  com- 
pensate for t h i s  phenomenon which w i l l  provide near optimum response. 

To design the  nonlinear function, one proceeds i n  exac t ly  the  same 
manner as w a s  described previously. The computations and details w i l l  
not be given here s ince they a r e  straightforward. 
chosen t o  m a k e  a. a function of error. The computed nonlinear funct ion 
B O ( € ) €  

For t h i s  case,  it w a s  

i s  shown i n  f igu re  64. 

40 

w 
n 

-40 

-80 -40 0 40 80 
&), deg 

Figure 64.- Nonlinear function used t o  modify the  
sampled-data bank-angle au topi lo t ;  D(z)  design. 

Figure 65 shows the  s t e p  responses of the  system when the  non- 
l i n e a r i t y  of f igu re  64 i s  introduced i n  place of t he  constant,  ao. 
comparison of f igu res  62 and 65 shows t h a t  the  response has been improved 
tremendously. 

A 
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Figure 65.-  Step responses of the modified sampled-data 
bank-angle autopilot; D ( z )  design. 

4.4 A Continuous Normal Acceleration Autopilot 

The two previous examples considered type 2 third-order plants. 
This example will be for a type 1 third-order plant and will be a con- 
tinuous system rather than a sampled-data system. The most significant 
feature of this particular example, as will be shown, is that it is 
necessary to use a more complicated nonlinear function to obtain satis- 
factory performance for large step inputs. 
of the usefulness of some of the ideas presented in section 2.7. 

This allows some verification 

The block diagram of the proposed system and definition of symbols 
A word of explanation of the figure is necessary. 

w(t) is fictitious and has been added for the sole 
is shown in figure 66. 
First, the quantity 
purpose of providing a plant transfer function 
those given in chapter 11. 
good step response between 
we get. 
of s in the transfer function C(s)/W(s), however, c(t) will be fairly 
close to w(t). Second, the input is multiplied by a gain factor K1 
in order to give a steady-state gain of the system equal to unity. This 
is necessary since an integration in the outer loop does not exist in 

W ( s )  which is one of 
In other words, the design will be to provide 
r(t) and w(t) and we will take whatever c(t) 

Because of the very small second- and first-order coefficients 
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Figure 66.- Block diagram of a normal acceleration autopilot. 
i l - .  i.llls < system. Third, the limit level is tQ.3. This gives a maxiinil;n rate 
of change of elevator deflection of -i.i2" psi" sccond. Fourth; the normal 
accelerometer is assumed to have a bias built into it such that its out- 
put is zero in steady level flight. c(t) is the 
change in normal acceleration from level flight conditions o r ,  in other 
words, the aircraft is assumed to be in a trim, level flight condition 
at the instant steps of 

From this standpoint 

r(t) are applied. 

It will be assumed that the purpose of the normal acceleration 
autopilot is to increase the natural frequency and damping of the basic 
airframe. 
and damping factor of the dominant second-order mode of tine traiisfer 
function C(s)/R(s) is Wn = 231, 5 = 0.70. With these factors in mind, 
we can now design the system for the linear region of operation determining 
the gain constants 

It will also be assumed that the desired natural frequency 

K,, Kz, and Kq. 

The closed-loop transfer function relating C(s)/R(s) is 

The transfer functions shown in equation (133) are given in figure 66. 
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The desired transfer function relating C(s)/R(s) is 

Note that an unknown first-order factor has been added to the denominator 
of equation (134) since we are dealing with a third-order control system. 
Thus, to determine the unknown coefficients 
coefficients of equal powers of 
tions (133) and (134). The coefficient K1 is then determined by forcing 
the gain of 

Kz, q, and T, one equates 
s between the denominators of equa- 

C(s)/R(s) to be unity in the steady state. 

The results after equating the denominators and solving for the 
coefficients are 

(135) 

Thus, a linear design has been established. Let us now consider the 
behavior of the system for large step inputs. 

The root loci for limiter gain variations from 0 to 1 are shown in 
figure 67. 
abscissa. This is a type 1 plant; however, the locus of the complex 
pole position indicates that we have designed a system which is almost 
unstable for a certain range of limiter gain. Furthermore, note that 
the complex pole is about the same distance away from the origin as the 
real pole for gain ranges from about 0.1 to 0.23. Since this complex 
pole is very lightly damped, we should expect the step response for cer- 
tain ranges of input magnitude to have a lightly damped oscillatory 
characteristic. The switch time method will be used to determine this 
range. 

Note the change in scale made between -5 and -6 on the 

As was mentioned previously, no curves of optimum reversal time have 

We 
been derived for the plant given by the transfer function 
figure 66. 
shall therefore use the method for w(t) rather than c(t). The two zeros 
of the transfer function 
in the s plane compared with the poles of W(s)/X(s) that they should 
not have too large an influence on the system response. 

C(s)/X(s) of 
We have, however, normalized curves given for -W(s)/X(s). 

C(s)/W(s) are sufficiently far from the origin . 
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Figure 67.- Root l o c i  of the  normal acce lera t ion  au top i lo t  
as a funct ion of the  l i m i t e r  gain. 

For the  p lan t  given by - W ( s ) / X ( s ) ,  reference t o  f igu re  66 shows the  
following: 

% = 2.66 

We a r e  p r inc ipa l ly  in te res ted  i n  the range of Ro up t o  a maximum 
of about 3g; therefore ,  t he  m a x i m u m  value of the  abscissa  of f igu re  37, 
where the  normalized f i r s t  reversa l  time i s  given, i s  

Therefore, f o r  reasons of accuracy it i s  b e t t e r  t o  use the  data given i n  
t a b l e  11. 
curve as follows 

. These da ta  give three  points  of the  optimum f i r s t  reversa l  



I R, = 0.4417g , T1 = 0.188 sec 

R, = 1.g95g , T1 = 0.376 see 
Ro = 4.10g , TI = 0.564 see 

We now desire to determine the actual first reversal curve. As has 
been the case previously, we must determine 
of r ( t ) .  As c a n  be noted from figure 66, if the magnitude of Ro is 
greater than (0.3/K1K2) =: 0.043g, then 
only interested in values of Ro greater than this magnitude. With 
reference to figure 66 

m(t) of figure 66 for a step 

x(t) will be saturated. We are 

m(t) = RoKIKZu(t) - Kzc(t) - qq(t) - 6(t) (1.39 1 
Since K2 is negative (see eq. (135)), m(T1) is equal to -0.3, for 

Ro positive. Thus, for large step magnitudes, Ro > 0.043, 

The value of 
footnote 11, chapter 11. 

m(T1) of equation (140) is taken equal to zero. (See 

The quantity (-0.3/s) of equation (140) is the Laplace transform of 
a negative step of 
tive sign must be taken since Kz is negative and we are assuming Ro 
is positive. The transfer functions C(s)/X(s), Q(s)/X(s), and A(s)/X(s) 
can be determined with reference to figure 66. The coefficients K1, Kz, 
and q are given by equation (135). 

x(t) of magnitude equal to the limit level. The nega- 

One can thus carry through the mathematical operations indicated 
in equation (140) and, by assuming various values of 
values of Ro which satisfy the eq~ation.~ 

T1, solve for the 

The results, after carrying through the mathematical operations 
indicated in equation (140), are compared to the optimum given by equa- 
tion (138) in figure 68. As can be seen from the figure, the actual 
curve crosses the optimum for inputs greater than approximately 1.Og. 
Thus, one can assume that the response will deteriorate if the input 
step magnitudes are greater than this value. This hypothesis is con- 
firmed by the step responses of the simulated system given in figure 69. 

~- ~~~~~ ~ 

31t should be pointed out here that for many of these computations, 1 

one can make use of the analog computer. 
example, one could simply simulate the system of figure 66 and put in 
steps and measure T1 as a function of the input step magnitude. 

For the present case, for 
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Figure 68.- First reversal times for the normal acceleration 
autopilot. 

Figure 69.  - Step responses of the iiolmd- acceleration autopilot. 
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A note  should be added t h a t  we have analyzed t h e  system f o r  
The small negative p a r t  of t he  response, a t  the  beginning 

w ( t )  

C ( s ) / W ( s ) .  
not  c ( t )  . 
of the  t rans ien t ,  i s  due t o  the  t r a n s f e r  function r e l a t i n g  
The small overshoot f o r  a s t e p  of 1.Og magnitude i s  perhaps a r e s u l t  of 
t h i s  sane t r a n s f e r  function, although it more probably i s  due t o  the  
f a c t  tha t  t he  system has some t r a n s i t i o n  time i n  going from one l i m i t  
t o  t he  other. 
i o r  and the r e s u l t s  given by f igu re  69 show t h a t  our o r i g i n a l  assumption 
of neglecting the  zeros i n  the  t r a n s f e r  function, C ( s ) / X ( s ) ,  i s  accurate 
enough for  engineering purposes. 

Thus, we are  r e a l l y  using f igure  68 f o r  approximate behav- 

We sha l l  not  compute the  response time of t h i s  system and compare 
it t o  the ac tua l  s ince we already know t h a t  some form of nonl inear i ty  
should be designed. We s h a l l  now consider t h i s  subjec t .  

Before designing a nonlinear function, one must f i r s t  consider t he  
p o s s i b i l i t i e s  t h a t  e x i s t .  With reference t o  f igu re  66, we see a t  l e a s t  
two poss ib i l i t i e s4  where a funct ion of a s ingle  var iab le  could be used: 

(1) Make K2 a funct ion of K l r ( t )  - c ( t )  

(2)  Make Kq a funct ion of q 

Neither one of these p o s s i b i l i t i e s  requires  a mul t ip l i e r  s ince,  f o r  the  
f i r s t  poss ib i l i t y ,  the  output of the  box labe led  would simply be a 
funct ion of i t s  input .  
poss ib i l i t y  must be ruled out ,  however, s ince 
if r ( t )  has a constant value.  This means t h a t  i f  K2 were made t o  
decrease as a funct ion of 
did not have uni ty  gain i n  the  steady s t a t e  f o r  constant inputs.  
l a r l y ,  Kq, a f f ec t s  t h e  s teady-state  gain, however, i n  a much smaller 
manner a s  can be recognized by equation (141) .  

K2 
This i s  t r u e  a l so  f o r  the second case.  The first 

K l r ( t )  - c ( t )  i s  not zero 

K l r ( t )  - c ( t ) ,  one would have a systemwhich 
Simi- 

1 

? 

If Kq i s  doubled from i t s  normal value f o r  example (see eq. (135)), the 
steady-state gain reduces from un i ty  t o  0.89, whereas, i f  K 1  i s  reduced 
t o  half  i t s  normal value,  the  gain changes from un i ty  t o  0.72. 
from these standpoints,  a change i n  i s  more des i rab le .  Furthermore, 
t he  s teady-state  value of q (see fig?66) i s  much smaller than i t s  

Thus, 

4 
A block diagram modification would allow a t  l e a s t  one o ther  

p o s s i b i l i t y  which i s  described i n  the  footnote 5 ,  chapter I V .  



93 

e 

transient value which means that a nonlinear function will have no effect 
on the steady-state gain if q 
be in the linear range (of the nonlinear function) for the practical 
range of input step magnitudes (i.e., 0 to 3g). 
ure 66, if c(t) is constant at 3g magnitude, q 
per second. 

is small enough, in the steady state, to 

With reference to fig- 
will be 3~2.65 = 7.95O 

To determine the desired nonlinear function, we proceed in the same 
manner as described previously. First, solve equation (139) for Qq(t) 
for t = T1 

Kqq(T1) = f[q(Tl)I = RO(T~)K~KZ - m(T1) - Kzc(T1) - &(Ti) (142) 

Since 
the other quantities are known at 
solve equation (142) for f(q). The value of m(T1) will be taken equal 
to zero as was done previously. Since 

Ro(T1) will be chosen to be the optimum given in figure 68 and all 
T1 (since x(t) = -O.3u(t)), one cam 

we can compute and plot q(T1) versus f [ q ( T 1 ) ] .  
figure 70. It can be seen that the nonlinear function has a straight 
line slope until Since the slope is not signifi- 
cantly different for a slightly higher value of q, we citn say that 
there will be only a sliiall chmge in st.eady-state gain for step inputs 
as high as 3g where the steady-state value of q is only 7.95O per 
second, as was previously mentioned. 

The result  is s i i ~ w r l  i i i  

q = 70 per second. 

-f 

9, deg /sec 
Figure 70.- Nonlinear function used to modify the 

normal acceleration autopilot. 
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The step responses of the normal acceleration autopilot, when the 
nonlinear function was introduced, are shown in figure 71. 
noted that the system response has not been improved tremendously. Of 
importance, however, note that the first overshoot is very small. This 
is simply because we are forcing the first reversal time to be correct, 
and this should result in very small or zero first overshoot as was 
mentioned in chapter 11. 

It can be 

3 

Time, sec 

b 2  
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+ I  3 
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C 

Figure 71.- Step responses of the modified normal 
acceleration autopilot. 

This example offers an opportunity to use some of the ideas suggested 
in section 2.7 to explain the reasons for the poor responses of figure 71 
as well as to do something about them, that is, determine different non- 
linear functions which will give good step responses. 
give a root-locus argument that shows why poor responses can exist in 
this system. 

First, we shall 

Then we will consider what can be done about it. 

One first writes the expression for the characteristic equation of 
C(s)/R(s) with respect to limiter gain, KL. This is 

~ 

4 
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1 + 5 0 K ~  
(0.1413+O.O0643Kz) s2 + (0.187-2.267Kq+O.O0419K1) s + (1-0.531Kz-1.407Kq) 

( 144) 
Notice t h a t  t h e  numerator i s  second order. 
i n  t h e  expression G ( s )  H(s) and, according t o  t h e  arguments given i n  
chapter 11, one should not necessar i ly  expect a s ing le  nonl inear  funct ion 
t o  be s u f f i c i e n t .  

Thus, t he re  are two zeros 

Let us p lo t  t he  l o c i  of zero posi t ions as a funct ion of Kq 
-0.328). 

i n  t h e  
range given from t h e  slope changes of f igu re  70 (-0.56 5 K 
The l o c i  along with t h e  complex pole l o c i  f o r  a constant #q = -0.328 
a r e  shown i n  f igure  72. The coef f ic ien t  Kl i s  assumed constant a t  

18 

.. 

-I 0 -8 -6 -4 -2 

6 

iw 

4 

2 

0 

. 

CT 
Figure 72.- Loci of zero posi t ions f o r  var iab le  Kq and locus of 

complex pole posit ion f o r  Kq = -0.328. 

t he  value given i n  equation (135). 
funct ion of q does not appear t o  be des i r ab le .  The n a t u r a l  frequency 
of t he  zeros s t ays  near ly  constant.  With experience one can v i s u a l i z e  
how t h e  complex pole pos i t ion  l o c i  (as a funct ion of l i m i t e r  gain)  would 
look f o r  each zero pos i t ion  along the zero locus.  The conclusion one 
reaches i s  t h a t  t h e  pos i t ion  of the complex pole l o c i  f o r  low values  of 
L . L A 1 - A .  limitpr i-_ gain, say 0.25 t o  0.1, w i l l  probably always be i n  a very l i g h t l y  
damped region of t he  s plane. These arguments could perhaps be made 

This s h i f t  i n  zero pos i t ion  as a 
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gat ion was completed, would have el iminated 
the  need f o r  a mul t ip l i e r .  This change i s  r ( t )  
shown i n  the  accompanying sketch. The 
upper box would be made a constant gain and 

l e s s  nebulous by a contour p l o t  of pole pos i t ion  f o r  constant values of 
l imi t e r  gain f o r  t h e  zeros s h i f t i n g  i n  the  manner indicated.  This has 
not  been done here, s ince  it appears qu i te  reasonable from the  above 
consideration that t h e  zero s h i f t  i s  not  des i r ab le  and gives a reason- 
ab le  explanation as t o  why t h e  s t e p  responses of f igu re  71 were not  
w e l l  damped f o r  la rge  inputs ,  even though t h e  f i r s t  r eve r sa l  time was 
made t o  be near optimum. 

c 

* t he  lower box made a nonl inear  funct ion of 

Consideration w i l l  now be given t o  two more complicated (from t h e  
p r a c t i c a l  standpoint)  nonlinear compensation schemes. The f irst  w i l l  
be t o  make K 2  a nonlinear funct ion of t he  e r r o r  E ( t )  ( s ee  f i g .  66). 
This function i s  more complicated, s ince  a mul t ip l i e r  i s  required.5 
The second w i l l  be t o  make both 
e r r o r ,  E ( t ) ,  i n  such a manner t h a t  t he  n a t u r a l  frequency of t he  zeros 
reduces while t he  damping r a t i o  s t ays  constant.  

K 2  and Kq nonl inear  funct ions of 

4 1 

Consider the  problem of making K2 a nonlinear funct ion of  e r ro r .  

This s h i f t  is  r ead i ly  computed from 
We would l i k e  t o  know how the  zeros s h i f t  as a funct ion of 
i s  assumed constant (Kq = -0.328). 
t h e  numerator of t he  second p a r t  of equation (144).  
computations a r e  shown i n  f i g u r e  73, along with t h e  complex pole locus 
f o r  var iable  l i m i t e r  gain but a constant Kl (Kl = -4.188). Comparing 
f igu res  72 and 73, one can see t h a t  t h i s  s h i f t  i n  zero pos i t ion  i s  more 
des i rab le  than the previous case.  The n a t u r a l  frequency of t he  zeros 
does decrease somewhat and dmping increases  so one i s  demanding l e s s  
of t h e  system f o r  l a rge  values of t h e  e r r o r .  

K2 i f  Kq 

The results of these  
L 

t he  e r ror .  The r e s u l t s  of using t h i s  
system would undoubtedly be the  same as 

The method of computing the  des i red  nonlinear funct ion of e r r o r ,  
K z ( ~ ) ,  is  done by making t h e  f irst  r eve r sa l  time optimum. 
equation (142), t h i s  time solved for 

One rewr i tes  
Kl 

c( f )  

The value of m(T1) has been taken equal t o  zero. Since 

L 
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Figure 73.- Locus of  zero pos i t ion  f o r  var iab le  Kl and locus of 
complex pole posi t ion f o r  K2 = -4.188. 

d T 1 )  = Ro(T1) - cV-1) ( 146 ) 

one can compute 
o f  these  computations are shown i n  f igure 74. 

K ~ ( E )  and E,  t h e  desired nonlinear function. The results 

The s t e p  responses f o r  t he  modified system when the  nonlinear 
funct ion 
an improvement as t h e  s h i f t  i n  zero posi t ions o f  f i gu re  73 indica tes  
should be the  case. 
enough so  t h a t  no f u r t h e r  designs need be made. 
complex examples, however, when a t  l e a s t  two nonlinear funct ions are 
required.  

K z ( E )  was introduced a re  shown i n  f igu re  75. The r e s u l t s  show 

A s  a matter of f ac t ,  t he  improvement i s  s i g n i f i c a n t  
There are probably more 

To demonstrate t he  method of computing two nonlinear functions,  w e  
consider a case where both a r e  made nonlinear funct ions of 
t h e  e r r o r .  One should perhaps note tha t  Kq could be made a funct ion 
of  
of computing t h i s  function i s  p rac t i ca l ly  t h e  same a s  f o r  t h i s  example. 

For t h i s  example, we s h a l l  force t h e  damping r a t i o  of t he  zeros t o  
remain constant a t  a value of 0.703 which i s  determined from t h e  values 
of Kq and Kl given i n  equation (135). The eqixition r e l a t i n g  t h e  

Kl and Kq 

q; however, we w i l l  not study t h i s  example here,  although t h e  method 
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Figure 74.- Nonlinear function of error f o r  normal acceleration 
autopilot. 

Figure 75.- Step responses of the modified normal acceleration 
autopilot. 
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damping r a t i o ,  C0, and na tu ra l  frequency, wn0, o f  t h e  zeros t o  
and K z  i s  given i n  equations (147) and (148). Kq 

0.187-2. 26vq+o. 00419Kz 

J (1-0.53lK1-1.407~~) (0.1413+0.00643Kz ) 
( 148 ) 

1 5 ,  = -  

Since of equation (148) i s  a constant, 5 ,  = 0.703, w e  can obtain 
an equation r e l a t i n g  
of to. One can thus put 5 ,  = 0.703 i n  equation (148) and solve f o r  
t he  r e l a t ionsh ip  between Kq and Kz. The r e su l t an t  quadratic equation 
i s  

5 ,  
Kq and Kl which provides t h i s  desired value 

Kq2 + ( -0.0885-0.000218K1)Kq + ( -0.04755+0.0266gKz+0.00i32K12) = 0 

(1.49) 

Note t h a t  both must be negative, s ince the  p lan t  has negative 
gain ( see  f i g .  66).  One can assume values of  K2 varying from nominal 
value Kl = -4.188 t o  lower values,  say Kl = -1, and solve f o r  Kq. 
The r e s u l t s  of  these  computations are p lo t t ed  i n  f igure  76. 

Kq and Kz 

We thus know t h e  desired re la t ionship  between Kq and Kz which 
makes t h e  zeros s h i f t  with a constant damping r a t i o .  What remains t o  
be determined i s  how they should s h i f t  as a funct ion of t h e  e r ro r .  This 
can be accomplished qui te  r ead i ly  by forcing them t o  s h i f t  so t jhat  t h e  
f i r s t  r eve r sa l  t i m e  i s  maintained optimum. The method by which t h i s  i s  
accomplished i s  very similar t o  the  one used previously. 
rewr i tes  equation (142) i n  t h e  following form: 

F i r s t ,  one 

The value of  
For each value of T1 t h i s  equation has the  following form 

m(T1) i s  taken equal t o  zero as has been done previously.  



100 

Kz 
Figure 76.- K versus Kl for a constant damping ratio of the 

normal acceleration autopilot. 

where a, b, and c are constants. Equation (151) is a linear equation 
in Kz(c) and Kq(€). It thus can be plotted as a straight line in fig- 
ure 76. 
of figure 76 is the desired value of 

The intersection point between this straight line and the curve 
Kz (E) and Kq(c). 

By choosing a number of values of TI in equation (l5O), one can 
obtain the results plotted in figure 77. Note that both functions 
decrease as the magnitude of the error increases. 

The step responses of the modified system with these nonlinearities 
introduced are shown in figure 78. 
significant improvement in this system response over the example where 
Kq was made a function of q. However, the response is very close to 
the previous example except that a slight decrease in the overshoot for 
a 3g step was noted. 

As can be noted, there is a very 

The last two examples have demonstrated that the ideas presented in 
section 2.7 have a real significance for complex problems. Combining 
root-locus arguments to obtain the desired zero locus (as a nonlinear 
function of error, for example), and the first reversal time for deter- 
mining the nonlinear functions, appears to have significance for 
application to high-order control systems. 
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V. CONCLUSIONS 

5.1 S m a r y  of  Results 

The a i m  of t h i s  inves t iga t ion  w a s  t o  develop methods f o r  the t r e a t -  
ment of s a tu ra t ion  (or l imi t ing )  i n  feedback cont ro l  systems. 
been found t h a t  i f  one t r e a t s  a l i m i t e r  as an equivalent gain ( the  gain 
constant decreases as the magnitude of the  input  t o  the  l i m i t e r  i nc reases ) ,  
then one can draw the root  l o c i  as a funct ion of the equivalent l i m i t e r  
gain. These roo t  l o c i ,  as has been shown by Kalman ( r e f .  2), give a 
qua l i t a t ive  p i c tu re  of the change i n  performance as the  input  t o  the  feed- 
back control  system i s  increased.  In  p a r t i c u l a r ,  it w a s  shown i n  chapter 
11, by the use of t h i s  root-locus method, t h a t  the fundamental character-  
i s t i c s  of a sa tura ted  cont ro l  system, f o r  l a rge  inputs ,  depends upon the  
number of i n t eg ra t ions  of t he  p lan t ,  t h a t  i s ,  the  number of poles a t  
s = 0 of the p lan t  t r a n s f e r  funct ion.  Thus, the c l a s s i f i c a t i o n  of p l an t s  
according t o  type, t h a t  i s ,  t he  number of poles  a t  the o r ig in  i n  the s 
plane, appears t o  o f f e r  a good way of remembering these fundamental charac- 
t e r i s t i c s .  I n  summary, these c h a r a c t e r i s t i c s  a r e  c 

It has 

(1) Type 1 plants  a r e  ve loc i ty  l imi t ed  and, therefore ,  the 
response w i l l  become more sluggish as the  s i ze  of the input  i s  increased.  .) 

(2) Type 2 p lan ts  are acce lera t ion  l imited,  and t h e i r  response 
w i l l  become o s c i l l a t o r y  as the  s i z e  of the  s t e p  input  i s  increased.  

(3) Type 3 p lan ts  always give cont ro l  systems which a r e  unstable  
f o r  low values of equivalent l i m i t e r  gain, and, therefore ,  the  feedback 
cont ro l  system w i l l  become unstable  f o r  la rge  s t e p  inputs .  

O f  course there  a r e  the exceptions t o  (1) and (2 )  when the  l i n e a r l y  
designed feedback cont ro l  system i s  unstable  or near ly  so as the  l i m i t e r  
gain i s  decreased as w a s  shown i n  the  c o r o l l a r i e s  of the ru l e s  presented 
i n  chapter 11. These exceptions can r e s u l t  i n  s t ab le  l i m i t  cycles f o r  
type 1 or type 2 p l an t s  but  unstable  l i m i t  cycles f o r  type 2 only. The 
system can be shocked i n t o  these l i m i t  cycles  by l a rge  input  disturbances.  

The most important contr ibut ion of t h i s  i nves t iga t ion  i s  the  appl i -  
ca t ion  of the switch time method f o r  ana lys i s  and synthesis  purposes. 
Althou& the author  and T r i p l e t t  i n  reference 5 explored some of the  
p o t e n t i a l i t i e s  of the method, i t s  der iva t ion  and usefulness were not  wel l  
understood a t  t h a t  time. 
of concept; t h a t  i s ,  the simple f a c t  t h a t  i f  t he  f i r s t  r eve r sa l  time i s  
longer than the  optimum re l ay  so lu t ion ,  then the s t e p  response must over- 
shoot.  This s impl ic i ty  of concept has allowed the use of the method f o r  
systems of any order ,  provided of course t h a t  the  l i n e a r  design meets the  . 
r e s t r i c t i o n s  imposed i n  chapter 11. The examples shown i n  chapter I V ,  
where third-order  sampled data and continuous au top i lo t s  were analysed 
and synthesized, demonstrate t he  usefulness of t h i s  method. 

One advantage of  t h i s  method i s  i t s  s impl i c i ty  

c 
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The switch time method as used f o r  synthesizing nonl inear  funct ions 
t o  improve the  s t e p  response i s  t o  the  author 's  knowledge one of the  few 
techniques ava i lab le  f o r  t h i s  purpose. I n  appl ica t ion ,  it a c t u a l l y  
provides a switching l i n e  which should be on the optimum r e l a y  switching 
surface of the  multidimensional (dependent on the order  of the p l a n t )  
phase space. The advantage of t he  technique, however, i s  t h a t  one does 
no t  need t o  know t h i s  switching surface,  which f o r  high-order systems i s  
very d i f f i c u l t  t o  determine, i n  order  t o  apply the technique. 

Another advantage of t he  switch t i m e  method i s  t h a t  one works d i r e c t l y  
with the  parameters of t he  feedback control  system and no t  with parameters 
of some transformation where, because of the  mathematics of  t h e  inverse  
&ransformation, t he  determination of  the a c t u a l  system's response, becomes 
very d i f f i c u l t .  

The f a c t  t h a t  the  Laplace transform of the  e r r o r  time signal must 
be an e n t i r e  function, i f  the  e r r o r  i s  t o  be reduced t o  zero i n  a f i n i t e  
time, i s  a valuable technique f o r  determining the  optimum response. The 
disadvantage of the  method, however, i s  t h a t  one must, by a p r i o r i  i n fo r -  
mation, s e l e c t  the  general  form of the inpu t  t o  the  p l an t .  A s  w a s  shown 
i n  chapter  111, t h i s  s e l ec t ion  i s  aided considerably by simple block 
diagram transformations and physical  reasoning. A p a r t i a l  check of the  
choice of the  general  form of the input i s  obtained i f  s u f f i c i e n t  equa- 
t i o n s  exist t o  force the  e r r o r  transform t o  be an e n t i r e  funct ion.  

One of the  i n t e r e s t i n g  by-products of t h i s  i nves t iga t ion  i s  the  f a c t  
t h a t  one must not  force  the l imi t ed  var iab le  t o  be a t  i t s  m a x i m u m  values 
throughout the t r a n s i e n t  i f  one desires  the minimum response time f o r  a 
p l an t  which has zeros i n  the  l e f t  half  plane. This i s  a r e s u l t  of the  
f a c t  t h a t  some of the s t a t e s  can be changing i n  a cont ro l led  manner while 
the  e r r o r  and i t s  der iva t ives  remain zero. This allows one t o  design a 
system which i s  much f a s t e r  ( i n  some cases)  than the  system which 
e s s e n t i a l l y  br ings a l l  t he  s t a t e s  t o  r e s t  a f t e r  the  t r a n s i e n t .  

5.2 Suggestions for Further  Research 

The concept of considering root l o c i  as a c t u a l l y  s h i f t i n g  as a 
funct ion of some parameter which was the equivalent  l i m i t e r  gain i n  t h i s  
i nves t iga t ion  appears t o  o f f e r  one way of analyzing t h e  behavior of 
c e r t a i n  nonlinear systems. In  pa r t i cu la r ,  i f  one a l s o  forces  the  zeros 
t o  s h i f t  as a function of some other parameter ( e r r o r  f o r  example), one 
can obtain a qua l i t a t ive  reason f o r  synthesizing nonl inear  systems t o  
behave i n  some des i red  fashion. It would, therefore ,  be des i rab le  t o  
es t ,ab l i sh  theo re t i ca l ly  when t h i s  type of treatment i s  permissible.  
( r e f .  2) made a s tar t  i n  this  direct ion,  and f u r t h e r  work would be very 
des i r ab le .  

Kalman 
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The technique of using t h e  e n t i r e  function t o  determine optimum 
switch times f o r  bang-bang operat ion (chapter  111) may have some use- 
fulness f o r  those i n t e r e s t e d  i n  determining optimum switching surfaces  
of high-order p l an t s .  This technique can be used, s ince,  regardless  of 
t he  posi t ion i n  the phase space, the e r r o r  transform m u s t  be an e n t i r e  
function i f  one has the optimum system. 

With regard t o  the  general  subjec t  of treatment of high-order systems 
by phase space techniques it i s  the opinion of the  author t h a t  from prac- 
t i c a l  considerations one need not  consider the  space as i n f i n i t e  i n  
dimension f o r  a l l  the  var iab les .  This i s  hypothesized, s ince f o r  a l a rge  
number of systems it i s  the  p lan t  input  which dr ives  the  system t o  the  
posi t ions i n  the  phase space; therefore ,  i f  the  p lan t  i s  s t ab le  and i f  
the  plant input  i s  bounded, c e r t a i n  dimensions of the  phase space a r e  
bounded. For example, f o r  type 1 p lan t s  only one dimension i s  i n f i n i t e ,  
s ince  only one in t eg ra t ion  e x i s t s .  
a r e  i n f i n i t e ,  e t c .  Thus, i f  t h i s  opinion i s  accepted, it means t h a t  the  
optimum switching surface i s  bounded i n  c e r t a i n  dimensions of the phase 
space. The f a c t  t h a t  it i s  bounded may, perhaps, o f f e r  some s impl i f ica t ion  
i n  the  determination of t he  optimum switching surface f o r  c e r t a i n  complex 
p l an t s .  These arguments go along with the  method proposed by Kalman L 

( r e f .  10) f o r  synthesizing nonl inear  funct ions f o r  near optimum response. 
The general subject  of "optimum systems," however, needs much f u r t h e r  
inves t iga t ion  f o r  high-order systems. 

For type 2 p l an t s  only two dimensions 

i 

Some f u r t h e r  areas  of inves t iga t ion  which would make the  switch time 
method of g rea t e r  use a r e  

(1) Determine the  optimum f i r s t  r eve r sa l  times and m i n i m u m  response 
time fo r  more p l an t s  i n  which both zeros and unstable  poles a re  included 
i n  the  plant  t r a n s f e r  funct ion.  

(2)  Determine, f o r  high-order complex p l an t s ,  how one should s h i f t  
the zeros i n  order  t o  give near  optimum response f o r  l a rge  inputs .  One 
example has been given i n  chapter I V ;  however, f u r t h e r  study appears 
desirable .  

( 3 )  Determine how the  nonl inear  system designed by the switch 
time method behaves f o r  inputs  o ther  than s t eps .  
simulation s tud ie s  have shown t h a t  such systems have subharmonic 
osc i l l a t ions  when driven by la rge  s ine  wave inputs  bu t  t h a t  the  system 
cannot be shocked i n t o  an unstable mode; however, more experimental and 
theo re t i ca l  work would be desirable .  

Some unreported 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  Calif . ,  May 7, 1959 
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